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MOTIVATION

Same pickup distance,

driver features, etc.

=  Driver A (hot)
= Driver B (cold)

Which one to dispatch?
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MOTIVATION
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QUESTIONS

What defines a hot/cold area?

Why reinforcement learning (why not supervised learning)?



A SEMI-MDP FORMULATION

State, s:=(l,p,u) is the
= geo-coordinates () of the driver
» the raw time stamp (p)
= the contextual feature vector (u), e.g. the supply-demand

conditions, driver service statics, etc.

Option, o the k-step transition of the driver
Reward, R is the total fee collected for the trip

= afunction of sand o

Policy, n(ols) is a function that

" maps a state s to a distribution over the action space

(stochastic policy) or a particular action (deterministic policy)




A SEMI-MDP FORMULATION

State value function, V(s): expected cumulative reward that.

= the driver will gain till the end of an episode if he/she starts at state s and follows a
policy T
V7 (s) := E{ Z yit s, = s)
i=t+1
= Similar to standard MDPs, we can write Bellman equations for general policies and options

given one-step transition (s;, R;, si4y)
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A SEMI-MDP FORMULATION

State value function, V(s): expected cumulative reward that.
= the driver will gain till the end of an episode if he/she starts at state s and follows a

policy

T
V7 (s) := E{ Z yit s, = s)

i=t+1
= Similar to standard MDPs, we can write Bellman equations for general policies and options

given one-step transition (s;, R;, si4y)

Smooth version of
reward clipping

Use of a secondary
neural network to
ensure training
stability

Parameterized by Training target
a neural network U Di Di




LEARNING AND PLANNING

O Q
Deep Reinforcement - Bipartite Graph
Learning Matching

Shared layers between I and V, frozen during distillation

Cerebellar Embedding ‘ i @ ®
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Dynamic features m n O O
Objective: MaXyeC 2joq 2j=1 Pij¥Xij

maximize the total utilities of the assignments where the utility scores are computed as the
Temporal Difference error between order’s destination state and driver ‘s current state, e.g.,

kij _1
(}/ ) + ykijV(Sj) — V(Si) + Q- Ul‘j
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LEARNING AND PLANNING

o006 60 @

Policy Evaluation

o >

Policy Improvement

« Planning using the new value network, which is fitted against data generated by the
old value network

» Learning needs to strike a balance between fitting the target while avoiding divergence
from the previous value network, e.g., on-policy methods like PPO, TRPO, etc.

« Significant improvement is obtained by iterating between online planning and offline
learning

5



ANSWERS

What defines a hot/cold area?

= The expectation of a driver’s earning potential

till the end of a day, e.g., long-term value

Why we care about long term value?

= This is a sequence decision problem

»= The dispatching action is temporally extended




ANSWERS

Why reinforcement learning (why not supervised learning)?

= The value network is obtained from fitting the driver’s historical income (target)

= The “target” changes as soon as a new value network is deployed in the environment

= Learning involves the balance between fitting the target while avoiding divergence from the
previous value network, e.g., on-policy methods

» Hard to do off-policy + importance sampling since we act by solving a combinatorial problem

instead of according to a probability distribution
Reinforcement Learning Framework

Why is this important? -

= Significant improvement by online + offline iterations ststem Envuonmem®
= No “labeling” cost ;m_ﬂ

= No “investment budget” or “subsidizing” cost

= The system automatically improves itself (reinforcement) D DiDi



QUESTIONS

How to learn a good value network for dispatching?



LEARNING AND PLANNING

» Memory-based Neural Network

Distributed representation

» Hierarchical Hexagon Tiling System

Lipschitz regularization

To capture unique properties of specific streets,

Context randomization neighborhoods, and cities, we let the model learn a hierarchy
of representations for areas of different size, with the precise
MU|tI_CIty tranSfer location represented in the model by the sum of the

embeddings of its location at various scales.
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LEARNING AND PLANNING

» Lipschitz value function

The variation of the function w.r.t. a change in its input is bounded

State representation

by the Lipschitz constant

» Regularize this constant during training
: : To induce a smoother value estimations and to stabilize the

Context randomization |

nonlinear Bellman update (replacing the target network

Mu|ti-city transfer introduced by the original DQN paper [Mnih et al., 2015]). We

find that this improves learning dynamics and policy convergence.
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LEARNING AND PLANNING

» Historical trajectory augmentation

During training we augment each historical driver trajectory with

State representation

contextual features extracted from the production logging system

Lipschitz regularization

» Build noise and variance into training

It is common to notice a +30 minutes shift of the rush hour peak

and the real-time statistics. Also the logging system often comes

MU|t|'C|ty transfer with scheduling bias.

» Hierarchical range query

Instead of matching with the exact spatiotemporal status, we
implement the procedure such that it allows the specification of a

range for a given query and returns all features within that range

throughout the history. L
U DiDi



LEARNING AND PLANNING

State representation

Fine-tuning' @l 'I =I ’I” .
izati slipyi
Context randomization v B

|:| Target city . Source city i___i Frozen

Lipschitz regularization

|:| Target city l Transfer i___i Frozen

» Correlated-feature progressive transfer

Instead of using a fully-connected network which takes all state elements as an entirety during

training, we build and train a parallel progressive structure with two separate input groups.

J DiDi



EXPERIMENT RESULTS

Training curve

Better dynamics and convergence compared to DQN
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EXPERIMENT RESULTS

Simulations with real-world data

= (Top) CVNet achieves an average improvements (across days) from 3% to 8%.

= (Bottom) Compare transfer methods (from city A to B, C and D) with baselines.
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EXPERIMENT RESULTS

Online A/B tests

= We conduct large scale online A/B tests, which demonstrate that the proposed method
achieves significant improvement on both total driver income and user experience related

metrics M ciyB W cityC " CityD
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Based on deep reinforcement learning and decision theory
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Thank You.

Xiaocheng Tang, Ph.D. /&
Staff Research Scientist

Al Labs @ DiDi Chuxing
Mountain View, CA, USA

Email: xiaochengtang@didiglobal.com
Linkedin: https://www.linkedin.com/in/xiaochengt/
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