
Value Function is All You Need: A Unified
Learning Framework for Ride Hailing
Platforms

Xiaocheng Tang
DiDi Labs, Mountain View, CA | http://mktal.github.io

Joint work with Fan Zhang, Zhiwei Qin, Yansheng Wang,
Dingyuan Shi, Bingchen Song, Yongxin Tong, Hongtu Zhu,
Jieping Ye

KDD ’21, Aug. 14–18, 2021, Singapore, Singapore

http://mktal.github.io

Background

Program Committee
Zhiwei(Tony) Qin, Xiaocheng Tang, Lulu Zhang, Yanhui Ma, Jianhua
Zhang, Fan Zhang, Cheng Zhang

9/17/2018 layer1314.html

file:///Users/xtang/Downloads/layer1314.html 1/1

+
−

Leaflet (http://leafletjs.com)

Geo Point

9/17
/201

8

layer
1314

.htm
l

file:/
//Use

rs/xt
ang/D

ownl
oads

/laye
r131

4.htm
l

1/1

+
−

Leaflet (http://leafletjs.com)

13

14

Activated Cells

concat

Cerebellar
Embedding

! "# Σ

$

%&

Location

Time

Dynamic features

concat

Cerebellar
Embedding%'

Static features

MLP

()

)

%Contextual
Features

Shared layers between *+ and +, frozen during distillation

MLP

,-

,.

,/

Cerebellar Embedding
Back
propagation

Teacher

Student

Lipschitz
regularization

Offline Reinforcement
Learning

Bipartite Graph
Matching+

A Deep Value-network Based Approach for Multi-Driver Order Dispatching KDD’19, 2019, Alaska, USA

be further augmented due to either long chain of downstream tasks
or simply large scale of the inputs, which can cause instability
and abnormal behavior at the system level. To obtain robustness
against perturbations, mathematically we would like the output of
the value function to be bounded, with respect to the p-norm of
interest | | · | |p , by its input state for all state in S, e.g.,

| |V (s1) �V (s2)| |p  Lp | |s1 � s2 | |p ,8s1, s2 2 S. (3)

Here the value of Lp , known as the Lipschitz constant, represents
the worst case variation of V with respect to a change in its input
s . In this case we would like to regularize Lp during training for a
robust value function.

An upper bound for the Lipschitz constant of a neural network
can be computed as the product of the Lipschitz constant of each
individual layer of the network. This is easy to show once we
notice that neural networks can be expressed as a series of function
compositions, e.g., V (s) = (�h � �h�1 · · · � �1)(s).

L(V)  �h
i=1L(�i) (4)

Hence to control the neural network’s global Lipschitz constant it is
su�cient to regularize the Lipschitz for each individual layer. The
value network that we use, as depicted in Figure 1, consists of both
the cerebellar embedding layer and the multilayer perceptron. We
now give the Lipschitz constants of these two layers as a function
of their parameters.

Multilayer Perceptron: Assume one linear layer followed by
an ReLU activation. The Lipschitz of the ReLU operation is bounded
by 1, e.g., Lr elup = 1, since the maximum absolute subgradient of
ReLU is 1. For the linear layer, assuming it is parameterized by a
weight matrix � l and a bias vector bl , we can derive its Lipschitz
constant as follows,

| |� l s1 + bl � (� l s2 + bl)| |p  Llp | |s1 � s2 | |p

) Llp �
| |� l (s1 � s2)| |p
| |s1 � s2 | |p

) Llp = sup
s,0

| |� l s | |p
| |s | |p

, s = s1 � s2

which is the operator norm of weight matrix � l . When p = 1 the
Lipschitz constant of the linear layer Llp is given by the maximum
absolute column sum of the weight matrix; when p = 1 it is the
maximum absolute row sum and when p = 2 it is the spectral norm
of � l which can be approximated using the power method.

Cerebellar Embedding: Recall that in Section 3.1 the embed-
ding process can be expressed as a sparse dot product c(s)T �M

n
where c(s) is a sparse vector with at most n non-zero entries. Since
this operation is linear in c(s), the Lipschitz can be computed simi-
larly as that of the linear layer. In this case it is the operator norm
of the transpose of the embedding matrix �M . Note that because
quantizations are used, there will be a sudden change in the output
value at the boundary of the quantization. This will not be an issue
in practice as long as the scale of the change is controlled. That is if
we regularize the operator norm of �M . In fact, note that the vector
c(s1)� c(s2) can have at most 2n non-zero entries for any s1, s2, e.g.,
when s1 and s2 have no overlap in the conceptual memory. Hence

the output of the cerebellar embedding layer is bounded as follows,

| |c(x1)T �M � c(x2)T �M | |p/n
= | |(c(x1) � c(x2))T �M | |p/n  2max

i
| |�Mi | |p

where�Mi is the ith row of�M .Whenp = 1, for example,maxi | |�Mi | |1 =
| |�M | |1 which is the in�nity norm of the matrix �M .

3.3 Policy Evaluation
Given the semi-MDP de�ned in Section 2, we want to solve for the
value function under the unknown dispatching policy � . We collect
the historical driver trajectories and divide it into a set of tuples
with each representing one driver transition spending k time steps
from s to s 0 during which the driver receives a total trip fee R, i.e.,
(s,R, s 0). Training follows the Double-DQN structure [16] for better
training stability. The main value network is denoted as V � (s |�)
where � representing all trainable weights in the neural network,
and a target V -network V̂ � (s |�̂), maintained and synchronized
periodically with the main networkV � (s |�), is used to evaluate the
update rule as given in (2). This update is converted into a loss to
be minimized L(�), most commonly the squared loss. Following
the discussions in Section 3.2, we add a penalty term R(�) on global
Lipschitz constant to the loss and introduce a penalty parameter
� > 0,
min
�

L(�) + � · R(�) :=

1
2
{V � (s |�) � (R(�

k � 1)
k(� � 1) + �

kV̂ � (s 0 |�̂))}2 + � ·
h’
i=1

L(�i)
(5)

Context Randomization: During training we augment each his-
torical driver trajectory with contextual features {�i } extracted
from the production logging system. Contextual features, espe-
cially real-time supply/demand statistics, often come with high
variance, e.g., it is common to notice a ±30 minutes shift of the
rush hour peak. Another issue is the scheduling bias in the logging
system, e.g., logging triggered every 5 minutes, which can cause too
many failed feature associations when matching using the exact
value of the spatiotemporal states. To account for those bias in
the training and to build temporal invariance into the system, we
use context randomization (6) in the augmentation process. That
is, instead of matching with the exact spatiotemporal status, we
implement a procedure called hierarchical range query �(·), which
allows the speci�cation of a range for the given query and returns
a set of contextual features within that range, i.e., �(l, µ, r�) ✓ {�i }
where r� specify the query range for time µ such that all contextual
features within [µ � r�, µ + r�] are returned.

4 PLANNINGWITH MULTI-DRIVER
DISPATCHING

The production environment is intrinsically multi-agent with multi-
ple drivers ful�lling passengers orders at the same time. A matching
problem [19] is usually formulated at this stage to optimally assign
the orders collected within a dispatching window to a set of drivers,
while also avoiding assignment con�icts such as matching one or-
der with multiple drivers. A utility score �i j is used to indicate the
value of matching each driver i and order j pair, and the objective

✓maximize the total utilities of the assignments where the utility scores are computed as the Temporal
Difference error between order’s destination state and driver ‘s current state, e.g.,

Objective

Algorithm 3.1 Regularized Policy Evaluation with Cerebellar
Value Network (CVNet)
1: Given: historical driver trajectories

{(si ,0,oi ,0, ri ,1, si ,1,oi ,1, ri ,2, ..., ri ,Ti , si ,Ti)}i 2H collected
by executing a (unknown) policy � in the environment.

2: Given: the hierarchical range query function �(l, µ, r�).
3: Given: n cerebellar quantization functions {q1, ...,qn }, regu-

larization parameter, max iterations, embedding memory size,
embedding dimension, memory mapping function, discount
factor, target update interval �,N ,A,m,�(·),� ,C > 0.

4: Compute training data from the driver trajectories
as a set of (state, reward, next state) tuples, e.g.,
{(si ,t ,Ri ,t , si ,t+ki ,t)}i 2H,t=0, ...,Ti where ki ,t is the du-
ration of the trip.

5: Initialize the state value network V with random weights �
(including both the embedding weights �M 2 RA⇥m and the
linear layer weights).

6: Initialize the target state value network V̂ with weights �̂ .
7: for � = 1, 2, · · · ,N do
8: Sample a random mini-batch {(si ,t ,Ri ,t , si ,t+ki ,t)} from the

training data.
9: Sample � randomly from the returned set of contextual fea-

tures given query l, µ, r� and add it to the state s .
�i ,t 2 �(li ,t , µi ,t , r�),

�i ,t+ki ,t 2 �(li ,t+ki ,t , µi ,t+ki ,t , r�)
(6)

10: Transform the mini-batch into a (feature, label) format,

e.g., {(xi ,�i)} where xi is si ,t and �i =
Ri ,t (� ki ,t �1)
ki ,t (��1) +

�ki ,t V̂ (si ,t+ki ,t)
11: Compute mini-batch gradient r | {xi ,�i }L(�)+�R(�) accord-

ing to (5)
12: Perform a gradient descent step on � with r | {xi ,�i }L(�) +

�R(�).
13: if � mod C = 0 then
14: �̂ �
15: end if
16: end for
17: return V

while also avoiding assignment con�icts such as matching one or-
der with multiple drivers. A utility score �i j is used to indicate the
value of matching each driver i and order j pair, and the objective
of the matching problem is to maximize the total utilities of the
assignments argmaxx 2C

Õm
i=1

Õn
j=1 �i jxi j where {xi j } are binary

decision variables subject to a set of constraints C to ensure the
feasibility of the �nal assignment solution, e.g., each order is at most
assigned to one driver, etc. This problem can be solved by standard
matching algorithms, such as the Hungarian Method (a.k.a. KM
algorithm).

Similar to the work in [19], we use the Temporal Di�erence error
between order’s destination state sj and driver’s current state si
as the utility score �i j . Given the policy value function V (s) as

described above, this could be computed as below,

�i j = Ri j
(�ki j � 1)
ki j (� � 1)

+ �ki jV (sj) �V (si) + � ·Ui j (7)

where Ri j is the trip fee collected after the driver i deliver order j;
ki j is the time duration of the trip and � is the discount factor to
account for the future uncertainty. Aside from the long term driver
income captured in the �rst part of (7), we also add an additional
term � ·Ui j , � � 0 where Ui j characterizes the user experience
from both the driver i and the passenger j so that we optimize
not only the driver income but also the experience for both sides.
As an example, settingUi j to be the negative of driver-passenger
distance will have the e�ect of minimizing the waiting time for the
passenger.

4.1 Feature Marginalization via Distillation
V (sj) in (7) represents the state value at order’s destination. The real
time dynamic features �d at the order’s destination, however, is not
available until the driver actually �nishes the trip. In other words,
we need a separate V-function that can evaluate the state value un-
der the absence of those real time dynamic features. Let us call this
V-function Ṽ . Given V � , Ṽ can be obtained through the marginal-
ization over those features, Ṽ � = E�d {V � (l, µ,�s ,�d)}. Here, the
contextual features � are split into two groups, the static features
�s and those dynamic features that require real-time computation
�d . The expectation is taken under the historical distribution of �d ,
e.g., p(�d |l, µ,�s).

We make use of knowledge distillation to approximate this ex-
pectation, treating V as the teacher network and training Ṽ to
mimic the output of V . Figure 1 illustrates the network structures
of Ṽ which is built on top of the structure of V . V and Ṽ share the
same state representation layers to encourage common knowledge
transfer but distinguish from each other by having their own MLP
and �nal output layers. We use the full original training set forV as
the transfer set and evaluate V on l, µ,� sampled from the transfer
set to obtain the targets for Ṽ . We activate distillation during the
training of V before each model checkpoint. The weights of V , in-
cluding the shared weights, are frozen and only the MLP layers of Ṽ
are updated during distillation. We �nd that the distillation usually
converges in less than 5 epochs and the distillation becomes much
faster at later stage of the training as V training also converges. So
we anneal the number of distillation epochs in the beginning of
the training. Afterwards we only run one epoch of updating Ṽ for
every model checkpoint. We �nd that this helps prevent over�tting
while reducing the computation overhead to the training.

5 MULTI-CITY TRANSFER
Order dispatching can be naturally formulated as a multi-task learn-
ing problem with each task targeting at one particular regional area
(e.g., a city). Training a single agent for all tasks may not scale well
and can even raise many practical concerns in both deployment and
model serving. On the other hand, training each task independently
is clearly suboptimal. To e�ciently scale CVNet to multiple cities,
in this work we employ a method called CFPT (correlated-feature
progressive transfer) proposed by [17] for the single driver dispatch-
ing environment. In CFPT the state space (and its corresponding

Spatiotemporal
optimality!

Algorithm 3.1 Regularized Policy Evaluation with Cerebellar
Value Network (CVNet)
1: Given: historical driver trajectories

{(si ,0,oi ,0, ri ,1, si ,1,oi ,1, ri ,2, ..., ri ,Ti , si ,Ti)}i 2H collected
by executing a (unknown) policy � in the environment.

2: Given: the hierarchical range query function �(l, µ, r�).
3: Given: n cerebellar quantization functions {q1, ...,qn }, regu-

larization parameter, max iterations, embedding memory size,
embedding dimension, memory mapping function, discount
factor, target update interval �,N ,A,m,�(·),� ,C > 0.

4: Compute training data from the driver trajectories
as a set of (state, reward, next state) tuples, e.g.,
{(si ,t ,Ri ,t , si ,t+ki ,t)}i 2H,t=0, ...,Ti where ki ,t is the du-
ration of the trip.

5: Initialize the state value network V with random weights �
(including both the embedding weights �M 2 RA⇥m and the
linear layer weights).

6: Initialize the target state value network V̂ with weights �̂ .
7: for � = 1, 2, · · · ,N do
8: Sample a random mini-batch {(si ,t ,Ri ,t , si ,t+ki ,t)} from the

training data.
9: Sample � randomly from the returned set of contextual fea-

tures given query l, µ, r� and add it to the state s .
�i ,t 2 �(li ,t , µi ,t , r�),

�i ,t+ki ,t 2 �(li ,t+ki ,t , µi ,t+ki ,t , r�)
(6)

10: Transform the mini-batch into a (feature, label) format,

e.g., {(xi ,�i)} where xi is si ,t and �i =
Ri ,t (� ki ,t �1)
ki ,t (��1) +

�ki ,t V̂ (si ,t+ki ,t)
11: Compute mini-batch gradient r | {xi ,�i }L(�)+�R(�) accord-

ing to (5)
12: Perform a gradient descent step on � with r | {xi ,�i }L(�) +

�R(�).
13: if � mod C = 0 then
14: �̂ �
15: end if
16: end for
17: return V

while also avoiding assignment con�icts such as matching one or-
der with multiple drivers. A utility score �i j is used to indicate the
value of matching each driver i and order j pair, and the objective
of the matching problem is to maximize the total utilities of the
assignments argmaxx 2C

Õm
i=1

Õn
j=1 �i jxi j where {xi j } are binary

decision variables subject to a set of constraints C to ensure the
feasibility of the �nal assignment solution, e.g., each order is at most
assigned to one driver, etc. This problem can be solved by standard
matching algorithms, such as the Hungarian Method (a.k.a. KM
algorithm).

Similar to the work in [19], we use the Temporal Di�erence error
between order’s destination state sj and driver’s current state si
as the utility score �i j . Given the policy value function V (s) as

described above, this could be computed as below,

�i j = Ri j
(�ki j � 1)
ki j (� � 1)

+ �ki jV (sj) �V (si) + � ·Ui j (7)

where Ri j is the trip fee collected after the driver i deliver order j;
ki j is the time duration of the trip and � is the discount factor to
account for the future uncertainty. Aside from the long term driver
income captured in the �rst part of (7), we also add an additional
term � ·Ui j , � � 0 where Ui j characterizes the user experience
from both the driver i and the passenger j so that we optimize
not only the driver income but also the experience for both sides.
As an example, settingUi j to be the negative of driver-passenger
distance will have the e�ect of minimizing the waiting time for the
passenger.

4.1 Feature Marginalization via Distillation
V (sj) in (7) represents the state value at order’s destination. The real
time dynamic features �d at the order’s destination, however, is not
available until the driver actually �nishes the trip. In other words,
we need a separate V-function that can evaluate the state value un-
der the absence of those real time dynamic features. Let us call this
V-function Ṽ . Given V � , Ṽ can be obtained through the marginal-
ization over those features, Ṽ � = E�d {V � (l, µ,�s ,�d)}. Here, the
contextual features � are split into two groups, the static features
�s and those dynamic features that require real-time computation
�d . The expectation is taken under the historical distribution of �d ,
e.g., p(�d |l, µ,�s).

We make use of knowledge distillation to approximate this ex-
pectation, treating V as the teacher network and training Ṽ to
mimic the output of V . Figure 1 illustrates the network structures
of Ṽ which is built on top of the structure of V . V and Ṽ share the
same state representation layers to encourage common knowledge
transfer but distinguish from each other by having their own MLP
and �nal output layers. We use the full original training set forV as
the transfer set and evaluate V on l, µ,� sampled from the transfer
set to obtain the targets for Ṽ . We activate distillation during the
training of V before each model checkpoint. The weights of V , in-
cluding the shared weights, are frozen and only the MLP layers of Ṽ
are updated during distillation. We �nd that the distillation usually
converges in less than 5 epochs and the distillation becomes much
faster at later stage of the training as V training also converges. So
we anneal the number of distillation epochs in the beginning of
the training. Afterwards we only run one epoch of updating Ṽ for
every model checkpoint. We �nd that this helps prevent over�tting
while reducing the computation overhead to the training.

5 MULTI-CITY TRANSFER
Order dispatching can be naturally formulated as a multi-task learn-
ing problem with each task targeting at one particular regional area
(e.g., a city). Training a single agent for all tasks may not scale well
and can even raise many practical concerns in both deployment and
model serving. On the other hand, training each task independently
is clearly suboptimal. To e�ciently scale CVNet to multiple cities,
in this work we employ a method called CFPT (correlated-feature
progressive transfer) proposed by [17] for the single driver dispatch-
ing environment. In CFPT the state space (and its corresponding

X. Tang et al., KDD Oral 2019

Background

Program Committee
Zhiwei(Tony) Qin, Xiaocheng Tang, Lulu Zhang, Yanhui Ma, Jianhua
Zhang, Fan Zhang, Cheng Zhang

9/17/2018 layer1314.html

file:///Users/xtang/Downloads/layer1314.html 1/1

+
−

Leaflet (http://leafletjs.com)

Geo Point

9/17
/201

8

layer
1314

.htm
l

file:/
//Use

rs/xt
ang/D

ownl
oads

/laye
r131

4.htm
l

1/1

+
−

Leaflet (http://leafletjs.com)

13

14

Activated Cells

concat

Cerebellar
Embedding

! "# Σ

$

%&

Location

Time

Dynamic features

concat

Cerebellar
Embedding%'

Static features

MLP

()

)

%Contextual
Features

Shared layers between *+ and +, frozen during distillation

MLP

,-

,.

,/

Cerebellar Embedding
Back
propagation

Teacher

Student

Lipschitz
regularization

Offline Reinforcement
Learning

Bipartite Graph
Matching+

A Deep Value-network Based Approach for Multi-Driver Order Dispatching KDD’19, 2019, Alaska, USA

be further augmented due to either long chain of downstream tasks
or simply large scale of the inputs, which can cause instability
and abnormal behavior at the system level. To obtain robustness
against perturbations, mathematically we would like the output of
the value function to be bounded, with respect to the p-norm of
interest | | · | |p , by its input state for all state in S, e.g.,

| |V (s1) �V (s2)| |p  Lp | |s1 � s2 | |p ,8s1, s2 2 S. (3)

Here the value of Lp , known as the Lipschitz constant, represents
the worst case variation of V with respect to a change in its input
s . In this case we would like to regularize Lp during training for a
robust value function.

An upper bound for the Lipschitz constant of a neural network
can be computed as the product of the Lipschitz constant of each
individual layer of the network. This is easy to show once we
notice that neural networks can be expressed as a series of function
compositions, e.g., V (s) = (�h � �h�1 · · · � �1)(s).

L(V)  �h
i=1L(�i) (4)

Hence to control the neural network’s global Lipschitz constant it is
su�cient to regularize the Lipschitz for each individual layer. The
value network that we use, as depicted in Figure 1, consists of both
the cerebellar embedding layer and the multilayer perceptron. We
now give the Lipschitz constants of these two layers as a function
of their parameters.

Multilayer Perceptron: Assume one linear layer followed by
an ReLU activation. The Lipschitz of the ReLU operation is bounded
by 1, e.g., Lr elup = 1, since the maximum absolute subgradient of
ReLU is 1. For the linear layer, assuming it is parameterized by a
weight matrix � l and a bias vector bl , we can derive its Lipschitz
constant as follows,

| |� l s1 + bl � (� l s2 + bl)| |p  Llp | |s1 � s2 | |p

) Llp �
| |� l (s1 � s2)| |p
| |s1 � s2 | |p

) Llp = sup
s,0

| |� l s | |p
| |s | |p

, s = s1 � s2

which is the operator norm of weight matrix � l . When p = 1 the
Lipschitz constant of the linear layer Llp is given by the maximum
absolute column sum of the weight matrix; when p = 1 it is the
maximum absolute row sum and when p = 2 it is the spectral norm
of � l which can be approximated using the power method.

Cerebellar Embedding: Recall that in Section 3.1 the embed-
ding process can be expressed as a sparse dot product c(s)T �M

n
where c(s) is a sparse vector with at most n non-zero entries. Since
this operation is linear in c(s), the Lipschitz can be computed simi-
larly as that of the linear layer. In this case it is the operator norm
of the transpose of the embedding matrix �M . Note that because
quantizations are used, there will be a sudden change in the output
value at the boundary of the quantization. This will not be an issue
in practice as long as the scale of the change is controlled. That is if
we regularize the operator norm of �M . In fact, note that the vector
c(s1)� c(s2) can have at most 2n non-zero entries for any s1, s2, e.g.,
when s1 and s2 have no overlap in the conceptual memory. Hence

the output of the cerebellar embedding layer is bounded as follows,

| |c(x1)T �M � c(x2)T �M | |p/n
= | |(c(x1) � c(x2))T �M | |p/n  2max

i
| |�Mi | |p

where�Mi is the ith row of�M .Whenp = 1, for example,maxi | |�Mi | |1 =
| |�M | |1 which is the in�nity norm of the matrix �M .

3.3 Policy Evaluation
Given the semi-MDP de�ned in Section 2, we want to solve for the
value function under the unknown dispatching policy � . We collect
the historical driver trajectories and divide it into a set of tuples
with each representing one driver transition spending k time steps
from s to s 0 during which the driver receives a total trip fee R, i.e.,
(s,R, s 0). Training follows the Double-DQN structure [16] for better
training stability. The main value network is denoted as V � (s |�)
where � representing all trainable weights in the neural network,
and a target V -network V̂ � (s |�̂), maintained and synchronized
periodically with the main networkV � (s |�), is used to evaluate the
update rule as given in (2). This update is converted into a loss to
be minimized L(�), most commonly the squared loss. Following
the discussions in Section 3.2, we add a penalty term R(�) on global
Lipschitz constant to the loss and introduce a penalty parameter
� > 0,
min
�

L(�) + � · R(�) :=

1
2
{V � (s |�) � (R(�

k � 1)
k(� � 1) + �

kV̂ � (s 0 |�̂))}2 + � ·
h’
i=1

L(�i)
(5)

Context Randomization: During training we augment each his-
torical driver trajectory with contextual features {�i } extracted
from the production logging system. Contextual features, espe-
cially real-time supply/demand statistics, often come with high
variance, e.g., it is common to notice a ±30 minutes shift of the
rush hour peak. Another issue is the scheduling bias in the logging
system, e.g., logging triggered every 5 minutes, which can cause too
many failed feature associations when matching using the exact
value of the spatiotemporal states. To account for those bias in
the training and to build temporal invariance into the system, we
use context randomization (6) in the augmentation process. That
is, instead of matching with the exact spatiotemporal status, we
implement a procedure called hierarchical range query �(·), which
allows the speci�cation of a range for the given query and returns
a set of contextual features within that range, i.e., �(l, µ, r�) ✓ {�i }
where r� specify the query range for time µ such that all contextual
features within [µ � r�, µ + r�] are returned.

4 PLANNINGWITH MULTI-DRIVER
DISPATCHING

The production environment is intrinsically multi-agent with multi-
ple drivers ful�lling passengers orders at the same time. A matching
problem [19] is usually formulated at this stage to optimally assign
the orders collected within a dispatching window to a set of drivers,
while also avoiding assignment con�icts such as matching one or-
der with multiple drivers. A utility score �i j is used to indicate the
value of matching each driver i and order j pair, and the objective

Algorithm 3.1 Regularized Policy Evaluation with Cerebellar
Value Network (CVNet)
1: Given: historical driver trajectories

{(si ,0,oi ,0, ri ,1, si ,1,oi ,1, ri ,2, ..., ri ,Ti , si ,Ti)}i 2H collected
by executing a (unknown) policy � in the environment.

2: Given: the hierarchical range query function �(l, µ, r�).
3: Given: n cerebellar quantization functions {q1, ...,qn }, regu-

larization parameter, max iterations, embedding memory size,
embedding dimension, memory mapping function, discount
factor, target update interval �,N ,A,m,�(·),� ,C > 0.

4: Compute training data from the driver trajectories
as a set of (state, reward, next state) tuples, e.g.,
{(si ,t ,Ri ,t , si ,t+ki ,t)}i 2H,t=0, ...,Ti where ki ,t is the du-
ration of the trip.

5: Initialize the state value network V with random weights �
(including both the embedding weights �M 2 RA⇥m and the
linear layer weights).

6: Initialize the target state value network V̂ with weights �̂ .
7: for � = 1, 2, · · · ,N do
8: Sample a random mini-batch {(si ,t ,Ri ,t , si ,t+ki ,t)} from the

training data.
9: Sample � randomly from the returned set of contextual fea-

tures given query l, µ, r� and add it to the state s .
�i ,t 2 �(li ,t , µi ,t , r�),

�i ,t+ki ,t 2 �(li ,t+ki ,t , µi ,t+ki ,t , r�)
(6)

10: Transform the mini-batch into a (feature, label) format,

e.g., {(xi ,�i)} where xi is si ,t and �i =
Ri ,t (� ki ,t �1)
ki ,t (��1) +

�ki ,t V̂ (si ,t+ki ,t)
11: Compute mini-batch gradient r | {xi ,�i }L(�)+�R(�) accord-

ing to (5)
12: Perform a gradient descent step on � with r | {xi ,�i }L(�) +

�R(�).
13: if � mod C = 0 then
14: �̂ �
15: end if
16: end for
17: return V

while also avoiding assignment con�icts such as matching one or-
der with multiple drivers. A utility score �i j is used to indicate the
value of matching each driver i and order j pair, and the objective
of the matching problem is to maximize the total utilities of the
assignments argmaxx 2C

Õm
i=1

Õn
j=1 �i jxi j where {xi j } are binary

decision variables subject to a set of constraints C to ensure the
feasibility of the �nal assignment solution, e.g., each order is at most
assigned to one driver, etc. This problem can be solved by standard
matching algorithms, such as the Hungarian Method (a.k.a. KM
algorithm).

Similar to the work in [19], we use the Temporal Di�erence error
between order’s destination state sj and driver’s current state si
as the utility score �i j . Given the policy value function V (s) as

described above, this could be computed as below,

�i j = Ri j
(�ki j � 1)
ki j (� � 1)

+ �ki jV (sj) �V (si) + � ·Ui j (7)

where Ri j is the trip fee collected after the driver i deliver order j;
ki j is the time duration of the trip and � is the discount factor to
account for the future uncertainty. Aside from the long term driver
income captured in the �rst part of (7), we also add an additional
term � ·Ui j , � � 0 where Ui j characterizes the user experience
from both the driver i and the passenger j so that we optimize
not only the driver income but also the experience for both sides.
As an example, settingUi j to be the negative of driver-passenger
distance will have the e�ect of minimizing the waiting time for the
passenger.

4.1 Feature Marginalization via Distillation
V (sj) in (7) represents the state value at order’s destination. The real
time dynamic features �d at the order’s destination, however, is not
available until the driver actually �nishes the trip. In other words,
we need a separate V-function that can evaluate the state value un-
der the absence of those real time dynamic features. Let us call this
V-function Ṽ . Given V � , Ṽ can be obtained through the marginal-
ization over those features, Ṽ � = E�d {V � (l, µ,�s ,�d)}. Here, the
contextual features � are split into two groups, the static features
�s and those dynamic features that require real-time computation
�d . The expectation is taken under the historical distribution of �d ,
e.g., p(�d |l, µ,�s).

We make use of knowledge distillation to approximate this ex-
pectation, treating V as the teacher network and training Ṽ to
mimic the output of V . Figure 1 illustrates the network structures
of Ṽ which is built on top of the structure of V . V and Ṽ share the
same state representation layers to encourage common knowledge
transfer but distinguish from each other by having their own MLP
and �nal output layers. We use the full original training set forV as
the transfer set and evaluate V on l, µ,� sampled from the transfer
set to obtain the targets for Ṽ . We activate distillation during the
training of V before each model checkpoint. The weights of V , in-
cluding the shared weights, are frozen and only the MLP layers of Ṽ
are updated during distillation. We �nd that the distillation usually
converges in less than 5 epochs and the distillation becomes much
faster at later stage of the training as V training also converges. So
we anneal the number of distillation epochs in the beginning of
the training. Afterwards we only run one epoch of updating Ṽ for
every model checkpoint. We �nd that this helps prevent over�tting
while reducing the computation overhead to the training.

5 MULTI-CITY TRANSFER
Order dispatching can be naturally formulated as a multi-task learn-
ing problem with each task targeting at one particular regional area
(e.g., a city). Training a single agent for all tasks may not scale well
and can even raise many practical concerns in both deployment and
model serving. On the other hand, training each task independently
is clearly suboptimal. To e�ciently scale CVNet to multiple cities,
in this work we employ a method called CFPT (correlated-feature
progressive transfer) proposed by [17] for the single driver dispatch-
ing environment. In CFPT the state space (and its corresponding

Spatiotemporal
optimality!

• Case study
‣ Left: same pickup distance, driver features, etc. Which one to dispatch?
‣ Right: same trip fee, pickup distance, passenger features, etc. Which one to fulfill?

• The final matching weight captures both cases balancing between the value
of passenger’s destination and that of the driver’s current state

•

�
�	������� ��������
 �

��

Background

9/17/2018 layer1314.html

file:///Users/xtang/Downloads/layer1314.html 1/1

+
−

Leaflet (http://leafletjs.com)

Geo Point

9/17
/201

8

layer
1314

.htm
l

file:/
//Use

rs/xt
ang/D

ownl
oads

/laye
r131

4.htm
l

1/1

+
−

Leaflet (http://leafletjs.com)

13

14

Activated Cells

concat

Cerebellar
Embedding

! "# Σ

$

%&

Location

Time

Dynamic features

concat

Cerebellar
Embedding%'

Static features

MLP

()

)

%Contextual
Features

Shared layers between *+ and +, frozen during distillation

MLP

,-

,.

,/

Cerebellar Embedding
Back
propagation

Teacher

Student

Lipschitz
regularization

Offline Reinforcement
Learning

Bipartite Graph
Matching+

A Deep Value-network Based Approach for Multi-Driver Order Dispatching KDD’19, 2019, Alaska, USA

be further augmented due to either long chain of downstream tasks
or simply large scale of the inputs, which can cause instability
and abnormal behavior at the system level. To obtain robustness
against perturbations, mathematically we would like the output of
the value function to be bounded, with respect to the p-norm of
interest | | · | |p , by its input state for all state in S, e.g.,

| |V (s1) �V (s2)| |p  Lp | |s1 � s2 | |p ,8s1, s2 2 S. (3)

Here the value of Lp , known as the Lipschitz constant, represents
the worst case variation of V with respect to a change in its input
s . In this case we would like to regularize Lp during training for a
robust value function.

An upper bound for the Lipschitz constant of a neural network
can be computed as the product of the Lipschitz constant of each
individual layer of the network. This is easy to show once we
notice that neural networks can be expressed as a series of function
compositions, e.g., V (s) = (�h � �h�1 · · · � �1)(s).

L(V)  �h
i=1L(�i) (4)

Hence to control the neural network’s global Lipschitz constant it is
su�cient to regularize the Lipschitz for each individual layer. The
value network that we use, as depicted in Figure 1, consists of both
the cerebellar embedding layer and the multilayer perceptron. We
now give the Lipschitz constants of these two layers as a function
of their parameters.

Multilayer Perceptron: Assume one linear layer followed by
an ReLU activation. The Lipschitz of the ReLU operation is bounded
by 1, e.g., Lr elup = 1, since the maximum absolute subgradient of
ReLU is 1. For the linear layer, assuming it is parameterized by a
weight matrix � l and a bias vector bl , we can derive its Lipschitz
constant as follows,

| |� l s1 + bl � (� l s2 + bl)| |p  Llp | |s1 � s2 | |p

) Llp �
| |� l (s1 � s2)| |p
| |s1 � s2 | |p

) Llp = sup
s,0

| |� l s | |p
| |s | |p

, s = s1 � s2

which is the operator norm of weight matrix � l . When p = 1 the
Lipschitz constant of the linear layer Llp is given by the maximum
absolute column sum of the weight matrix; when p = 1 it is the
maximum absolute row sum and when p = 2 it is the spectral norm
of � l which can be approximated using the power method.

Cerebellar Embedding: Recall that in Section 3.1 the embed-
ding process can be expressed as a sparse dot product c(s)T �M

n
where c(s) is a sparse vector with at most n non-zero entries. Since
this operation is linear in c(s), the Lipschitz can be computed simi-
larly as that of the linear layer. In this case it is the operator norm
of the transpose of the embedding matrix �M . Note that because
quantizations are used, there will be a sudden change in the output
value at the boundary of the quantization. This will not be an issue
in practice as long as the scale of the change is controlled. That is if
we regularize the operator norm of �M . In fact, note that the vector
c(s1)� c(s2) can have at most 2n non-zero entries for any s1, s2, e.g.,
when s1 and s2 have no overlap in the conceptual memory. Hence

the output of the cerebellar embedding layer is bounded as follows,

| |c(x1)T �M � c(x2)T �M | |p/n
= | |(c(x1) � c(x2))T �M | |p/n  2max

i
| |�Mi | |p

where�Mi is the ith row of�M .Whenp = 1, for example,maxi | |�Mi | |1 =
| |�M | |1 which is the in�nity norm of the matrix �M .

3.3 Policy Evaluation
Given the semi-MDP de�ned in Section 2, we want to solve for the
value function under the unknown dispatching policy � . We collect
the historical driver trajectories and divide it into a set of tuples
with each representing one driver transition spending k time steps
from s to s 0 during which the driver receives a total trip fee R, i.e.,
(s,R, s 0). Training follows the Double-DQN structure [16] for better
training stability. The main value network is denoted as V � (s |�)
where � representing all trainable weights in the neural network,
and a target V -network V̂ � (s |�̂), maintained and synchronized
periodically with the main networkV � (s |�), is used to evaluate the
update rule as given in (2). This update is converted into a loss to
be minimized L(�), most commonly the squared loss. Following
the discussions in Section 3.2, we add a penalty term R(�) on global
Lipschitz constant to the loss and introduce a penalty parameter
� > 0,
min
�

L(�) + � · R(�) :=

1
2
{V � (s |�) � (R(�

k � 1)
k(� � 1) + �

kV̂ � (s 0 |�̂))}2 + � ·
h’
i=1

L(�i)
(5)

Context Randomization: During training we augment each his-
torical driver trajectory with contextual features {�i } extracted
from the production logging system. Contextual features, espe-
cially real-time supply/demand statistics, often come with high
variance, e.g., it is common to notice a ±30 minutes shift of the
rush hour peak. Another issue is the scheduling bias in the logging
system, e.g., logging triggered every 5 minutes, which can cause too
many failed feature associations when matching using the exact
value of the spatiotemporal states. To account for those bias in
the training and to build temporal invariance into the system, we
use context randomization (6) in the augmentation process. That
is, instead of matching with the exact spatiotemporal status, we
implement a procedure called hierarchical range query �(·), which
allows the speci�cation of a range for the given query and returns
a set of contextual features within that range, i.e., �(l, µ, r�) ✓ {�i }
where r� specify the query range for time µ such that all contextual
features within [µ � r�, µ + r�] are returned.

4 PLANNINGWITH MULTI-DRIVER
DISPATCHING

The production environment is intrinsically multi-agent with multi-
ple drivers ful�lling passengers orders at the same time. A matching
problem [19] is usually formulated at this stage to optimally assign
the orders collected within a dispatching window to a set of drivers,
while also avoiding assignment con�icts such as matching one or-
der with multiple drivers. A utility score �i j is used to indicate the
value of matching each driver i and order j pair, and the objective

Offline RL

•Evaluated the value network on the hundreds of millions of historical driver trajectories based on a semi-MDP formulation
•Proposed the use of Lipschitz regularization on the value function for better offline RL performance
‣Kumar et al., 2020 makes the case that for TD-learning with function approximation the neural network is being implicitly

under-parametrized with a drop in the rank of learned features
‣Gogianu et al., 2021 improves the performance of DQN by simply constraining the Lipschitz constant of a single layer, which

also help preserve the rank of the features
•Context randomization, hierarchical coarse-coded embedding and multi-city progressive transfer for better generalization

in the real world

X. Tang et al., KDD Oral 2019

Applying it to all drivers in D, we obtain the population-based
mean-squared TD error :

min
�

L(D;�) :=
’

i 2DD

(V� (sidr i�er) � r
i
order � �

�torder V̄� (siorder))
2

+
’
i 2DI

(V� (sidr i�er) � �
�tidle V̄� (siidle))

2 =
’
i 2D

(� i�)
2

(4)

Here following the common practice [18] a target network V̄� is
used to stabilize the training, which acts as a delayed copy of the
V-networkV� . After each round of dispatch we updateV� by taking
a gradient descent step towards minimizing L(�), i.e., � � �
�rL(D;�) where � > 0 is a step-size parameter to control the
learning rate.

4 VALUE ENSEMBLE WITH OFFLINE POLICY
EVALUATION

Online learning enables fast adaptations in real time, but su�ers
from both sample-ine�ciency and the overemphasis on "recency"
while overlooking important global patterns which can be more
easily captured by learning from the large o�ine datasets. In fact,
from (4) it can be seen that the size of the online training data
depends on the number of drivers and their corresponding states
in the system. Hence the e�ectiveness of online learning can vary
noticeably depending on the availability of drivers and the scale of
the operating city given that the performance of RLmethods usually
hinges on a su�cient coverage of state distribution in the training
data. In this section we discuss the remedies to these issues and
propose a periodic ensemble method to incorporate the knowledge
from o�ine training methods.

4.1 Regularized O�line Policy Evaluation
We adopt the approach proposed in [16] for estimating the state
value function from the historical driver trajectories H . The objec-
tive of o�ine policy evaluation (OPE) is obtained by applying the
Bellman squared error to each driver transition extracted from the
full trajectory of each episode. Each transition is represented by a
tuple (s,R, s 0) 2 H meaning that the driver moves from state s to
s 0 while receiving a reward of R. Given such transition datasetH
the learning objective can be obtained as follows,

min
�

Lope (H ; �) :=

E(s ,R,s 0)⇠H
h
(R + ��tV̂ope (s 0, t 0 |�) �Vope (s, t |�))2

i
+ � · Lr e�(�)

(5)

where R denotes the properly discounted reward from the transi-
tion based on the Semi-MDP formulation [16], V̂ope is the target
network [18] and the regularization term Lr e� is added to induce a
smooth and robust value response by minimizing an upper bound
on the global Lipschitz constant of the neural network Vope (·|�)
with trainable weights �. Note that to account for the time-varying
aspect of the system, we augment the input state to the value func-
tion with the current time stamp, which is one main di�erence from
the online objective (4). This allows us to obtain a time series of
state value functions which will be used as the basis for ensemble

with the online value function. More implementation details can
be found in the Appendix A.3.

4.2 Periodic Value Ensemble
In the online environment we maintain and update V� using the
results of each dispatching round according to (4). To account for the
non-stationarity of the environment, we periodically ‘reinitialize’
V� with a weighted ensemble scheme combining the latest state
of V� and the snapshot of the o�ine trained V t

ope . Speci�cally, let
E denote the set consisting of changing time points when the re-
ensemble is triggered. At the current time step if t 2 E, then we
re-ensemble as follows,

8s, V� (s) �V� (s) + (1 � �)V t
ope (s). (6)

where� > 0 is a hyperparameter to balance the weighting between
online value function and o�ine trained values. Note that Vope
is trained with the current time stamp as part of the input as in
(5) such that V t

ope (s) can be obtained by �xing time at t for each
state s . The set E can be determined by learning a segmentation on
the historical aggregated order time series to identify the temporal
boundaries of the order distributional shift [17] (for implementation
details refer to Appendix A.2).

There are important nuances in learning mechanisms between
V� and Vope . To better understand the intuition behind (6), note
that while the full driver trajectory is known and available for learn-
ing the o�ine value Vope , for V� only the partial driver trajectory
is available for training since it is updated online in a temporally
sequential order. At time step t , for example, V t

ope re�ects the his-
torical trajectories from t till the end of the episode, while V� is
trained on the trajectories from the beginning of the current episode
till time t . Through weighted ensemble of both V t

ope and V� , we
are able to capture general time varying patterns across the history
of episodes while also accounting for individual variations of the
current episode.

5 UNIFIED FRAMEWORK FOR DISPATCH
AND REPOSITION

We now describe the method to dispatch orders and to reposition
vehicles based on the value functionV� . The dispatchmethod adopts
the approach used in [16, 20] which embeds the value function into
a combinatorial problem to resolve the dispatching constraints in
real time. It can be seen as a policy improvement step [14] in a multi-
agent environment with thousands of drivers. Reposition shares the
same centralized value function with dispatching and computes the
action in a value-based probabilistic manner. We will demonstrate
empirically later that this simple approach, when integrated into
the proposed uni�ed framework, can achieve robust and superior
performance even when the number of managed vehicles scales to a
signi�cant portion of the whole vehicle population on the platform.

5.1 Planning With Multi-driver Dispatching
The order-dispatching system of the ride-hailing platforms can be
viewed as a centralized planner continuously querying and process-
ing the system state involving the current outstanding requests and
available vehicles. Within each such decision window a bipartite
matching problem is formulated based on the current system state.

Challenges

•Ride-hailing marketplace — multi-task sequential decision problem
‣Order dispatching and vehicle repositioning (autonomous fleet management)
‣Hundreds of thousands of decisions are made per day with extended temporal effects
‣Connecting tens of thousands of vehicles in a city to millions of ride demands continuously throughout the day

Value Function is All You Need: A Unified Learning Framework
for Ride Hailing Platforms

Xiaocheng Tang1, Fan Zhang1, Zhiwei Qin1, Yansheng Wang2, Dingyuan Shi2, Bingchen Song2,
Yongxin Tong2, Hongtu Zhu1, Jieping Ye3

1AI Labs, Didi Chuxing
{xiaochengtang,feynmanzhangfan,qinzhiwei,zhuhongtu}@didiglobal.com

2School of Computer Science and Engineering and IRI, Beihang University, China
{arthur_wang,chnsdy,songbch,yxtong}@buaa.edu.cn
3University of Michigan, Ann Arbor, United States

jpye@umich.edu

ABSTRACT
Large ride-hailing platforms, such as DiDi, Uber and Lyft, connect
tens of thousands of vehicles in a city to millions of ride demands
throughout the day, providing great promises for improving trans-
portation e�ciency through the tasks of order dispatching and
vehicle repositioning. Existing studies, however, usually consider
the two tasks in simpli�ed settings that hardly address the complex
interactions between the two, the real-time �uctuations between
supply and demand, and the necessary coordinations due to the
large-scale nature of the problem. In this paper we propose a uni�ed
value-based dynamic learning framework (V1D3) for tackling both
tasks. At the center of the framework is a globally shared value
function that is updated continuously using online experiences
generated from real-time platform transactions. To improve the
sample-e�ciency and the robustness, we further propose a novel
periodic ensemble method combining the fast online learning with
a large-scale o�ine training scheme that leverages the abundant his-
torical driver trajectory data. This allows the proposed framework
to adapt quickly to the highly dynamic environment, to generalize
robustly to recurrent patterns and to drive implicit coordinations
among the population of managed vehicles. Extensive experiments
based on real-world datasets show considerably improvements over
other recently proposed methods on both tasks. Particularly, V1D3
outperforms the �rst prize winners of both dispatching and repo-
sitioning tracks in the KDD Cup 2020 RL competition, achieving
state-of-the-art results on improving both total driver income and
user experience related metrics.

CCS CONCEPTS
•Applied computing!Transportation; •Computingmethod-
ologies!Multi-agent reinforcement learning; Reinforcement learn-
ing; Multi-task learning; Intelligent agents.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’21, Aug. 14–18, 2021, Singapore, Singapore
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467096

KEYWORDS
Order Dispatching, Vehicle Repositioning, Autonomous Driving,
Fleet Management, Neural Networks, Reinforcement Learning
ACM Reference Format:
Xiaocheng Tang1, Fan Zhang1, Zhiwei Qin1, Yansheng Wang2, Dingyuan
Shi2, Bingchen Song2, Yongxin Tong2, Hongtu Zhu1, Jieping Ye3 . 2021.
Value Function is All You Need: A Uni�ed Learning Framework for Ride
Hailing Platforms. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD ’21), August 14–18, 2021, Virtual
Event, Singapore. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3447548.3467096

Figure 1: An illustration of V1D3. At the center is the glob-
ally shared value function that is continuously updated by
both online learning and value ensemble from the o�line
model.

1 INTRODUCTION
Popular online ride-hailing platforms, such as Uber, Lyft, and DiDi,
have revolutionized the way people travel and socialize in cities
across the world and are increasingly becoming essential compo-
nents of the modern transit infrastructure. The rising prevalence
of these ride-hailing platforms, seamlessly connecting passengers
with drivers through their smart mobile phones, has provided great

Challenges

•Real-time dynamics between supply and demand in a stochastic and time-varying
environment.
‣Daily recurrent variations usually have good representations in large historical datasets (offline RL)
‣Occurrences of irregular (long-tail) events some may never occur in the training data (online learning)
‣Additional contextual features are NOT good enough

•Coordinations among vehicles (multi-agent)
‣Resolve dispatching constraints and avoid undesirable competitions among managed vehicles

•Interactions between tasks (multi-task)
‣Both tasks modify the system state, e.g., supply/demand distributions, as well as the state transition

dynamics, e.g., traffic on the road and the estimated arrival time.

Reposition algoDispatch algo

V1D3: Next Generation Decision Engine

A unified value-based dynamic learning framework (V1D3)
for both dispatching and repositioning

Offline RL

Online
Adaptations

Multi-task

Multi-agent

Ride-hailing
Marketplace

V1D3: Next Generation Decision Engine

✓At the center of the framework is a globally
shared value function that is updated
continuously to reflect in real time the platform
transactions

‣Both tasks rely on the shared value function for
decision making
‣Any changes on the global state made by

dispatching and repositioning are communicated in
real-time through the value function
‣A “feedback loop” to reach equilibrium of

supply and demand as an implicit form of
coordinations

A unified value-based dynamic learning framework (V1D3)
for both dispatching and repositioning

V1D3: Next Generation Decision Engine

✓Online adaptations with the population-
based TD learning objective obtained for each
round of dispatch

‣Positive updates from drivers successfully
matched with passengers

‣Negative updates from idling drivers

‣ Intuitively positive updates increase the state value
while negative updates decrease the corresponding
ones. Together the objective is to minimize the
population-based mean-squared TD error

A unified value-based dynamic learning framework (V1D3)
for both dispatching and repositioning

idle movements or trip assignments. This allows the value function
to adapt quickly to any new changes in the environment.

There are, however, important limitations for relying solely
on online learning without learning from the history. Its sample-
ine�ciency due to the need for in�nite online exploration is, of
course, well known [13]. More importantly, the ride-hailing envi-
ronment is a time-varying system with multiple systematic shifts
of the state distribution and dynamics throughout the day, e.g.,
the transition from morning rush hours to o�-peak hours around
noon. Note, however, that this systematic distributional shift follows
strong patterns that can be more easily captured in the historical
data, compared to the aforementioned irregular events and daily
variations in supply and demand which appear more like random
noise that are hard to learn by o�ine training alone.

To address the above limitations, we further propose a novel en-
semblemethod combining the fast online learningwith a large-scale
o�ine policy evaluation scheme building upon the previous work
CVNet [16] that leverages the abundant historical driver trajectory
data. The proposed method maintains a centralized value function,
adapted quickly with new online experiences, while periodically
ensembled with the o�ine-trained value function at the correspond-
ing temporal slice. Together we show that the value function not
only is able to capture general time varying patterns and general-
izes across the history of episodes, but also accounts for the noisy
variations of the current episode through the online learning proce-
dures. Crucial to this capability is that the value function behaves
as a "shared memory" between the two tasks, refreshed whenever
new changes take place, such that by acting through the "shared
memory" repositioning recognizes what to expect from dispatching
while dispatching is aware of the latest changes resulted from repo-
sitioning. Finally, the updates applied to the value function operate
as an implicit form of coordinations among the controlled agents,
with a "feedback loop" such that previous repositioning results are
communicated in the global value store which informs the current
decision making accordingly.

The rest of the paper is organized as follows. We start by lay-
ing out the notations and de�nitions used in the paper in Section
2. Then we derive the online learning objective in Section 3 and
describe the periodic ensemble method in Section 4. The uni�ed
framework for dispatching and repositioning based on the value
function is detailed in Section 5 along with the complete algorith-
mic procedures. Experiment results are presented in Section 6. We
conclude our work in Section 7.

2 PRELIMINARIES
We consider the activities of each driver as a semi-Markov deci-
sion process (SMDP) [16] with a set of temporally extended actions
known as options. At decision point t the driver i takes an option oit ,
transitioning from current state sit to the next state s

i
t 0 at time step t 0

while receiving a numerical reward r it . The available options to take
at each state can be either a trip assignment or an idle reposition,
which can be compactly represented as a tuple consisting of the
destination and the reward, i.e., (sit 0, r

i
t) where the duration of the

transition is given by t 0 � t . The reward is equal to the trip fee if the
option is a trip assignment, and is zero if the option is an idle repo-
sition. The driver enters the system and starts taking order requests

at the start of the day t = 0, and �nishes the day, or the episode,
at the terminal time step t = T . Through the episode a policy
� (ot |st), or �t , speci�es the probability of taking option ot in state
st . The state value function V � (s) := E{ÕT

j=t+1 �
j�t�1r j |st = s}

for the policy � , is the expected long-term discounted reward ob-
tained at a state s and following � thereafter till the end of the
episode. V � (s) is the �xed point of the Bellman operator T � , 8s:
T �V (s) := E{rost + � t

0�tV � (st 0)|st = s} where rost is the corre-
sponding accumulative discounted reward received through the
course of the option [16].

3 POPULATION-BASED ONLINE LEARNING
OBJECTIVE

In this section, we present the online method to learn and update
the value function such that it captures the nonstationary dynamics
of the supply-demand conditions in real time. Later we will dis-
cuss how to complement it with o�ine training the value function
in the uni�ed optimization framework for both dispatching and
repositioning.

Consider the set of available driversD in the current dispatching
window. After dispatching the states of the drivers will change
based on di�erent options the drivers execute. Hence we update the
value functions accordingly accounting for each driver’s di�erent
transition. In particular, let the set DD denote the set of drivers
successfully assigned with orders. Let DI := D \ DD denote the
idle drivers that have not been assigned with orders in the current
dispatching round. For each driver i 2 DD , let sidr i�er denote the
current driver state and siorder denote the destination state of the
order assigned to the driver i . The one-step Bellman update for this
transition is then given by,

V (sidr i�er) r iorder + �
�torderV (siorder) (1)

where r iorder is the corresponding order trip fee and �torder is the
estimated order trip duration.

For each driver i 2 DI , let siidle denote the next state after idle
movement from the current state sidr i�er . Then the Bellman update
for this idle transition is given by,

V (sidr i�er) 0 + ��tidleV (siidle) (2)

where the transition yields 0 reward and lasts for �tidle duration.
Following practical Q-learning methods (e.g., [6, 18]), we can con-
vert the above Bellman updates into a bootstrapping-based objective
for training a V-network,V� , via gradient descent. This objective is
also known as mean-squared temporal di�erence (TD) error. Par-
ticularly, let � i� represent the TD error for the ith driver and we
obtain,

� i� =

(
r iorder + �

�torderV� (siorder) �V� (s
i
dr i�er) 8i 2 DD ;

��tidleV� (siidle) �V� (s
i
dr i�er) 8i 2 DI .

(3)

idle movements or trip assignments. This allows the value function
to adapt quickly to any new changes in the environment.

There are, however, important limitations for relying solely
on online learning without learning from the history. Its sample-
ine�ciency due to the need for in�nite online exploration is, of
course, well known [13]. More importantly, the ride-hailing envi-
ronment is a time-varying system with multiple systematic shifts
of the state distribution and dynamics throughout the day, e.g.,
the transition from morning rush hours to o�-peak hours around
noon. Note, however, that this systematic distributional shift follows
strong patterns that can be more easily captured in the historical
data, compared to the aforementioned irregular events and daily
variations in supply and demand which appear more like random
noise that are hard to learn by o�ine training alone.

To address the above limitations, we further propose a novel en-
semblemethod combining the fast online learningwith a large-scale
o�ine policy evaluation scheme building upon the previous work
CVNet [16] that leverages the abundant historical driver trajectory
data. The proposed method maintains a centralized value function,
adapted quickly with new online experiences, while periodically
ensembled with the o�ine-trained value function at the correspond-
ing temporal slice. Together we show that the value function not
only is able to capture general time varying patterns and general-
izes across the history of episodes, but also accounts for the noisy
variations of the current episode through the online learning proce-
dures. Crucial to this capability is that the value function behaves
as a "shared memory" between the two tasks, refreshed whenever
new changes take place, such that by acting through the "shared
memory" repositioning recognizes what to expect from dispatching
while dispatching is aware of the latest changes resulted from repo-
sitioning. Finally, the updates applied to the value function operate
as an implicit form of coordinations among the controlled agents,
with a "feedback loop" such that previous repositioning results are
communicated in the global value store which informs the current
decision making accordingly.

The rest of the paper is organized as follows. We start by lay-
ing out the notations and de�nitions used in the paper in Section
2. Then we derive the online learning objective in Section 3 and
describe the periodic ensemble method in Section 4. The uni�ed
framework for dispatching and repositioning based on the value
function is detailed in Section 5 along with the complete algorith-
mic procedures. Experiment results are presented in Section 6. We
conclude our work in Section 7.

2 PRELIMINARIES
We consider the activities of each driver as a semi-Markov deci-
sion process (SMDP) [16] with a set of temporally extended actions
known as options. At decision point t the driver i takes an option oit ,
transitioning from current state sit to the next state s

i
t 0 at time step t 0

while receiving a numerical reward r it . The available options to take
at each state can be either a trip assignment or an idle reposition,
which can be compactly represented as a tuple consisting of the
destination and the reward, i.e., (sit 0, r

i
t) where the duration of the

transition is given by t 0 � t . The reward is equal to the trip fee if the
option is a trip assignment, and is zero if the option is an idle repo-
sition. The driver enters the system and starts taking order requests

at the start of the day t = 0, and �nishes the day, or the episode,
at the terminal time step t = T . Through the episode a policy
� (ot |st), or �t , speci�es the probability of taking option ot in state
st . The state value function V � (s) := E{ÕT

j=t+1 �
j�t�1r j |st = s}

for the policy � , is the expected long-term discounted reward ob-
tained at a state s and following � thereafter till the end of the
episode. V � (s) is the �xed point of the Bellman operator T � , 8s:
T �V (s) := E{rost + � t

0�tV � (st 0)|st = s} where rost is the corre-
sponding accumulative discounted reward received through the
course of the option [16].

3 POPULATION-BASED ONLINE LEARNING
OBJECTIVE

In this section, we present the online method to learn and update
the value function such that it captures the nonstationary dynamics
of the supply-demand conditions in real time. Later we will dis-
cuss how to complement it with o�ine training the value function
in the uni�ed optimization framework for both dispatching and
repositioning.

Consider the set of available driversD in the current dispatching
window. After dispatching the states of the drivers will change
based on di�erent options the drivers execute. Hence we update the
value functions accordingly accounting for each driver’s di�erent
transition. In particular, let the set DD denote the set of drivers
successfully assigned with orders. Let DI := D \ DD denote the
idle drivers that have not been assigned with orders in the current
dispatching round. For each driver i 2 DD , let sidr i�er denote the
current driver state and siorder denote the destination state of the
order assigned to the driver i . The one-step Bellman update for this
transition is then given by,

V (sidr i�er) r iorder + �
�torderV (siorder) (1)

where r iorder is the corresponding order trip fee and �torder is the
estimated order trip duration.

For each driver i 2 DI , let siidle denote the next state after idle
movement from the current state sidr i�er . Then the Bellman update
for this idle transition is given by,

V (sidr i�er) 0 + ��tidleV (siidle) (2)

where the transition yields 0 reward and lasts for �tidle duration.
Following practical Q-learning methods (e.g., [6, 18]), we can con-
vert the above Bellman updates into a bootstrapping-based objective
for training a V-network,V� , via gradient descent. This objective is
also known as mean-squared temporal di�erence (TD) error. Par-
ticularly, let � i� represent the TD error for the ith driver and we
obtain,

� i� =

(
r iorder + �

�torderV� (siorder) �V� (s
i
dr i�er) 8i 2 DD ;

��tidleV� (siidle) �V� (s
i
dr i�er) 8i 2 DI .

(3)

Applying it to all drivers in D, we obtain the population-based
mean-squared TD error :

min
�

L(D;�) :=
’

i 2DD

(V� (sidr i�er) � r
i
order � �

�torder V̄� (siorder))
2

+
’
i 2DI

(V� (sidr i�er) � �
�tidle V̄� (siidle))

2 =
’
i 2D

(� i�)
2

(4)

Here following the common practice [18] a target network V̄� is
used to stabilize the training, which acts as a delayed copy of the
V-networkV� . After each round of dispatch we updateV� by taking
a gradient descent step towards minimizing L(�), i.e., � � �
�rL(D;�) where � > 0 is a step-size parameter to control the
learning rate.

4 VALUE ENSEMBLE WITH OFFLINE POLICY
EVALUATION

Online learning enables fast adaptations in real time, but su�ers
from both sample-ine�ciency and the overemphasis on "recency"
while overlooking important global patterns which can be more
easily captured by learning from the large o�ine datasets. In fact,
from (4) it can be seen that the size of the online training data
depends on the number of drivers and their corresponding states
in the system. Hence the e�ectiveness of online learning can vary
noticeably depending on the availability of drivers and the scale of
the operating city given that the performance of RLmethods usually
hinges on a su�cient coverage of state distribution in the training
data. In this section we discuss the remedies to these issues and
propose a periodic ensemble method to incorporate the knowledge
from o�ine training methods.

4.1 Regularized O�line Policy Evaluation
We adopt the approach proposed in [16] for estimating the state
value function from the historical driver trajectories H . The objec-
tive of o�ine policy evaluation (OPE) is obtained by applying the
Bellman squared error to each driver transition extracted from the
full trajectory of each episode. Each transition is represented by a
tuple (s,R, s 0) 2 H meaning that the driver moves from state s to
s 0 while receiving a reward of R. Given such transition datasetH
the learning objective can be obtained as follows,

min
�

Lope (H ; �) :=

E(s ,R,s 0)⇠H
h
(R + ��tV̂ope (s 0, t 0 |�) �Vope (s, t |�))2

i
+ � · Lr e�(�)

(5)

where R denotes the properly discounted reward from the transi-
tion based on the Semi-MDP formulation [16], V̂ope is the target
network [18] and the regularization term Lr e� is added to induce a
smooth and robust value response by minimizing an upper bound
on the global Lipschitz constant of the neural network Vope (·|�)
with trainable weights �. Note that to account for the time-varying
aspect of the system, we augment the input state to the value func-
tion with the current time stamp, which is one main di�erence from
the online objective (4). This allows us to obtain a time series of
state value functions which will be used as the basis for ensemble

with the online value function. More implementation details can
be found in the Appendix A.3.

4.2 Periodic Value Ensemble
In the online environment we maintain and update V� using the
results of each dispatching round according to (4). To account for the
non-stationarity of the environment, we periodically ‘reinitialize’
V� with a weighted ensemble scheme combining the latest state
of V� and the snapshot of the o�ine trained V t

ope . Speci�cally, let
E denote the set consisting of changing time points when the re-
ensemble is triggered. At the current time step if t 2 E, then we
re-ensemble as follows,

8s, V� (s) �V� (s) + (1 � �)V t
ope (s). (6)

where� > 0 is a hyperparameter to balance the weighting between
online value function and o�ine trained values. Note that Vope
is trained with the current time stamp as part of the input as in
(5) such that V t

ope (s) can be obtained by �xing time at t for each
state s . The set E can be determined by learning a segmentation on
the historical aggregated order time series to identify the temporal
boundaries of the order distributional shift [17] (for implementation
details refer to Appendix A.2).

There are important nuances in learning mechanisms between
V� and Vope . To better understand the intuition behind (6), note
that while the full driver trajectory is known and available for learn-
ing the o�ine value Vope , for V� only the partial driver trajectory
is available for training since it is updated online in a temporally
sequential order. At time step t , for example, V t

ope re�ects the his-
torical trajectories from t till the end of the episode, while V� is
trained on the trajectories from the beginning of the current episode
till time t . Through weighted ensemble of both V t

ope and V� , we
are able to capture general time varying patterns across the history
of episodes while also accounting for individual variations of the
current episode.

5 UNIFIED FRAMEWORK FOR DISPATCH
AND REPOSITION

We now describe the method to dispatch orders and to reposition
vehicles based on the value functionV� . The dispatchmethod adopts
the approach used in [16, 20] which embeds the value function into
a combinatorial problem to resolve the dispatching constraints in
real time. It can be seen as a policy improvement step [14] in a multi-
agent environment with thousands of drivers. Reposition shares the
same centralized value function with dispatching and computes the
action in a value-based probabilistic manner. We will demonstrate
empirically later that this simple approach, when integrated into
the proposed uni�ed framework, can achieve robust and superior
performance even when the number of managed vehicles scales to a
signi�cant portion of the whole vehicle population on the platform.

5.1 Planning With Multi-driver Dispatching
The order-dispatching system of the ride-hailing platforms can be
viewed as a centralized planner continuously querying and process-
ing the system state involving the current outstanding requests and
available vehicles. Within each such decision window a bipartite
matching problem is formulated based on the current system state.

V1D3: Next Generation Decision Engine

✓Periodic value ensemble with offline
evaluated time-sensitive policy for handling
distributional shift in a time-varying non-stationary
environment

‣Lipschitz-regularized offline policy evaluation with
time stamp inputs to obtain a time series of state
value functions
‣Periodically ‘reinitialize’ with a weighted ensemble

scheme and a pre-determined set of ensemble time
points from learning a segmentation on the
historical aggregated order time series

A unified value-based dynamic learning framework (V1D3)
for both dispatching and repositioning

9/17/2018 layer1314.html

file:///Users/xtang/Downloads/layer1314.html 1/1

+
−

Leaflet (http://leafletjs.com)

Geo Point

9/17
/201

8

layer
1314

.htm
l

file:/
//Use

rs/xt
ang/D

ownl
oads

/laye
r131

4.htm
l

1/1

+
−

Leaflet (http://leafletjs.com)

13

14

Activated Cells

concat

Cerebellar
Embedding

! "# Σ

$

%&

Location

Time

Dynamic features

concat

Cerebellar
Embedding%'

Static features

MLP

()

)

%Contextual
Features

Shared layers between *+ and +, frozen during distillation

MLP

,-

,.

,/

Cerebellar Embedding
Back
propagation

Teacher

Student

Lipschitz
regularization

V1D3: Next Generation Decision Engine

✓Sample-efficiency and robustness: the
novel periodic ensemble method combining the
fast online learning with a large-scale offline
training scheme that leverages the abundant
historical driver trajectory data
‣Adapt quickly to the highly dynamic environment,
‣Generalize robustly to recurrent patterns
‣Drive implicit coordinations among the

population of managed vehicles

✓V1D3 outperforms both first prize winners of
dispatching and repositioning tracks in the KDD
Cup 2020 RL competition, achieving state-of-the-
art results on improving both total driver
income and user experience related
metrics

A unified value-based dynamic learning framework (V1D3)
for both dispatching and repositioning

V1D3: Next Generation Decision Engine

A unified value-based dynamic learning framework (V1D3)
for both dispatching and repositioning

Figure 2: Illustrations of the reposition process byV1D3. The
green arrow denotes the reposition direction sampled from
the grid value distribution in the vicinity of the vehicle.

The solution of the problemmakes sure that dispatching constraints
are respected while the sum of utility scores is maximized. Mathe-
matically it can be written as a constrained optimization with the
utility score �i j indicating the value of matching each driver i to
an order j, as follows:

argmax
xi j

M’
j=0

N’
i=0

�i jxi j , s.t.
M’
j=0

xi j  1 8i;
N’
i=0

xi j  1 8j . (7)

where

xi j =

⇢
1 if order j is assigned to driver i;
0 if order j is not assigned to driver i .

which can be solved by standard matching algorithms [7].
We compute the utility score �i j as the TD error de�ned in (3),

i.e.,

�i j = r
j
order + �

�torderV� (s
j
dest ination) �V� (s

i
dr i�er)

where r jorder denotes the trip fee the driver receives by serving
the order j, �torder is the estimated trip duration, s jdest ination
represents the state at the destination of the order j. As TD error
�i j computes the di�erence between the expected return of a driver
i accepting order j and that of the driver staying where she is.
Alternatively it can also be seen as the advantage of executing
the option of picking up the order j compared to the option of
no movement. For each driver such advantage is di�erent when
pairing with di�erent orders. And our objective is to maximize the
total advantage collectively for all drivers under constraints.

5.2 Large-scale Fleet Management
Consider the set of repositioning drivers as I which includes all
drivers with idle time exceeding a threshold of C minutes (typically
�ve to tenminutes). For each driver i 2 I, we consider repositioning
the driver to a location selected from a set of candidate destinations
Od (si) given the driver’s current state si . By doing so we expect
to maximize the expected long-term return for the driver, i.e., the
value of the destination state. Particularly, we sample the reposition
destination with probability proportional to the discounted state

value function, e.g.,

p(sik) ⇠
e�

�tikV� (s ik)

Õ
j 2Od (s i) e

� �ti jV� (s ij)
, 8k 2 Od (si) (8)

where 0 < �  1 is the discount factor and �tik represents the
estimated travel time to the destination k . We always include the
driver’s current location in the candidate set i 2 Od (si). In that case
the travel time will be zero �tii = 0 and the state value will not
be discounted when computing the sampling probability. That is,
the cost of repositioning to a state di�erent from the current is ac-
counted for such that a closer destination with a smaller reposition
cost is preferred given the same state value.

Algorithm 5.1 Uni�ed Value Learning Framework for Dynamic
Order Dispatching and Driver Repositioning (V1D3)
1: Given: the ensemble weight 1 > � > 0, the reposition threshold
C > 0 (usually chosen between 150 and 300).

2: Given: the o�ine evaluated value function Vope .
3: Compute the set E containing the changing time points to

re-ensemble.
4: Initialize the state value network V with random weights � .
5: for the dispatch round t = 1, 2, · · · ,N do
6: if t 2 E then
7: 8s, V� (s) �V� (s) + (1 � �)V t

ope (s).
8: end if
9: Solve the dispatch problem (7) given the current value V� .
10: if t mod C = 0 then
11: Collect all drivers with idle time exceeding C time steps.
12: Compute the destination distribution (8) for each driver

given the current value V� .
13: Reposition each driver stochastically according to the dis-

tribution.
14: end if
15: Obtain the system state DD , DI and D = DD [DI .
16: Construct the gradient of the learning objective (4), i.e.,

rL(D;�) based on the current system state D.
17: Update the state value network by performing a gradient

descent step on � , e.g., � � � �rL(D;�)
18: end for
19: return V

5.3 Uni�ed Value-based Learning Framework
We combine on-policy learning and o�ine policy evaluation for
both order dispatching and vehicle repositioning in a uni�ed frame-
work presented in Algorithm 5.1. In particular, at the beginning of
each episode we initialize the state value network V with random
weights � , and obtain the o�ine policy network Vope pretrained
using (5). The training states are augmented by additional time
stamp inputs on usually one month of order transactions and driver
trajectories collected through the ride-hailing platform. At Step 2
we precompute the set E of changing time points by learning a
segmentation on the historical aggregated order time series.

In the main loop, for each dispatching round t (usually every 2
seconds), we re-ensemble the value network at Step 6 if t 2 E. For a

KDD ’21, Aug. 14–18, 2021, Singapore, Singapore Tang, et al.

(a) (b)

Figure 3: (a). The driversmanaged by V1D3 achieve the highest total income rate (reposition score), surpassing the top solution
TLab in KDD Cup 2020 and the human Expert policy. (b). The relative di�erence (%) of reposition score between N = 100 and
2000 with error bar denoting the standard deviation across 5 days. Here V1D3 demonstrates a robust high performance, within
<0.7% variation, as the managed �eet size N increases 20x.

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

Before After

…

Additions of drivers
at the grid center…

(a) (b)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

…

Additions of passengers
at the grid center …

Before After

(c) (d)

Figure 4: (a) and (c). Value distribution before and after additions of new drivers (orders) at the grid center; (b) and (d). Each
color represents the value distributions of the sets of cells at di�erent radius to the center, e.g., radius 0 denotes the grid center.
The values decrease (increase) in response to new additional supplies (demands) as desired. The magnitude of the response
gradually diminishes as time elapses and as the distance to the grid center increases.

The results are presented in Figure 3a. Each algorithm is eval-
uated using real-world data on 5 di�erent dates including both
weekdays and weekends. And the same simulations are repeated
for N = 100, 1000, 2000. For each N we report the mean (the marker)
and the variance (the shaded area) of the reposition score across 5
dates. First we note that when N is small (100) all three learning-
based methods outperform the human expert policy by a signif-
icant margin, e.g., more than 6% improvement achieved by the
best performer V1D3-G in this case. As N increases, however, the
performance of TLab deteriorates dramatically, as much as over
15%, as shown in Figure 3b. On the other hand, V1D3 achieves
a remarkable 12% improvement on the average income rate com-
pared to TLab as N increases to 2000, and outperforms consistently
with great margin both TLab and the human Expert in all cases.
Note that N=2000 is more than 20% of the vehicle population in
the simulations. The results show that the proper use of stochastic
policy helps improve the robustness to the increase of N (V1D3 vs
V1D3-G), and that online learning facilitates e�ective coordination
among managed vehicles and help achieve a stunning performance

scalability and robustness when N increases in both deterministic
and stochastic cases, e.g., V1D3 outperforms the TLab by 15x and
the human Expert policy by nearly 4x as shown in Figure 3b.

6.3 Performance Analysis
In this subsection we take a deeper look at the online learning
component of V1D3. It enables V1D3 to quickly adapt to any new
changes occurring in the online environment and is key to the
superior performance of V1D3 in both order dispatching and driver
repositioning. In the following experiments we empirically support
this observation by simulating the occurrences of irregular events
and visualizing the changes of the values in response to those events.
The results are presented in Figure 4.

6.3.1 The additions of new drivers. This illustrates the real-world
cases where drivers (or supplies) become available at the neighbor-
hood of one location, either by completing previous orders or by
going online from o�ine, e.g., at the airport or the busy downtown
district. To visualize the adaptive response of V1D3 to such events,

V1D3: Next Generation Decision Engine

Simulate the response curve of V1D3’s value function
according to the change of supply and demand.

KDD ’21, Aug. 14–18, 2021, Singapore, Singapore Tang, et al.

(a) (b)

Figure 3: (a). The driversmanaged by V1D3 achieve the highest total income rate (reposition score), surpassing the top solution
TLab in KDD Cup 2020 and the human Expert policy. (b). The relative di�erence (%) of reposition score between N = 100 and
2000 with error bar denoting the standard deviation across 5 days. Here V1D3 demonstrates a robust high performance, within
<0.7% variation, as the managed �eet size N increases 20x.

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

Before After

…

Additions of drivers
at the grid center…

(a) (b)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

…

Additions of passengers
at the grid center …

Before After

(c) (d)

Figure 4: (a) and (c). Value distribution before and after additions of new drivers (orders) at the grid center; (b) and (d). Each
color represents the value distributions of the sets of cells at di�erent radius to the center, e.g., radius 0 denotes the grid center.
The values decrease (increase) in response to new additional supplies (demands) as desired. The magnitude of the response
gradually diminishes as time elapses and as the distance to the grid center increases.

The results are presented in Figure 3a. Each algorithm is eval-
uated using real-world data on 5 di�erent dates including both
weekdays and weekends. And the same simulations are repeated
for N = 100, 1000, 2000. For each N we report the mean (the marker)
and the variance (the shaded area) of the reposition score across 5
dates. First we note that when N is small (100) all three learning-
based methods outperform the human expert policy by a signif-
icant margin, e.g., more than 6% improvement achieved by the
best performer V1D3-G in this case. As N increases, however, the
performance of TLab deteriorates dramatically, as much as over
15%, as shown in Figure 3b. On the other hand, V1D3 achieves
a remarkable 12% improvement on the average income rate com-
pared to TLab as N increases to 2000, and outperforms consistently
with great margin both TLab and the human Expert in all cases.
Note that N=2000 is more than 20% of the vehicle population in
the simulations. The results show that the proper use of stochastic
policy helps improve the robustness to the increase of N (V1D3 vs
V1D3-G), and that online learning facilitates e�ective coordination
among managed vehicles and help achieve a stunning performance

scalability and robustness when N increases in both deterministic
and stochastic cases, e.g., V1D3 outperforms the TLab by 15x and
the human Expert policy by nearly 4x as shown in Figure 3b.

6.3 Performance Analysis
In this subsection we take a deeper look at the online learning
component of V1D3. It enables V1D3 to quickly adapt to any new
changes occurring in the online environment and is key to the
superior performance of V1D3 in both order dispatching and driver
repositioning. In the following experiments we empirically support
this observation by simulating the occurrences of irregular events
and visualizing the changes of the values in response to those events.
The results are presented in Figure 4.

6.3.1 The additions of new drivers. This illustrates the real-world
cases where drivers (or supplies) become available at the neighbor-
hood of one location, either by completing previous orders or by
going online from o�ine, e.g., at the airport or the busy downtown
district. To visualize the adaptive response of V1D3 to such events,

V1D3: Next Generation Decision Engine

•The presence of additional drivers quickly brings down the value
•The values gradually return to stable state after the additional supply

is consumed (feedback loop)

KDD ’21, Aug. 14–18, 2021, Singapore, Singapore Tang, et al.

(a) (b)

Figure 3: (a). The driversmanaged by V1D3 achieve the highest total income rate (reposition score), surpassing the top solution
TLab in KDD Cup 2020 and the human Expert policy. (b). The relative di�erence (%) of reposition score between N = 100 and
2000 with error bar denoting the standard deviation across 5 days. Here V1D3 demonstrates a robust high performance, within
<0.7% variation, as the managed �eet size N increases 20x.

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

Before After

…

Additions of drivers
at the grid center…

(a) (b)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

…

Additions of passengers
at the grid center …

Before After

(c) (d)

Figure 4: (a) and (c). Value distribution before and after additions of new drivers (orders) at the grid center; (b) and (d). Each
color represents the value distributions of the sets of cells at di�erent radius to the center, e.g., radius 0 denotes the grid center.
The values decrease (increase) in response to new additional supplies (demands) as desired. The magnitude of the response
gradually diminishes as time elapses and as the distance to the grid center increases.

The results are presented in Figure 3a. Each algorithm is eval-
uated using real-world data on 5 di�erent dates including both
weekdays and weekends. And the same simulations are repeated
for N = 100, 1000, 2000. For each N we report the mean (the marker)
and the variance (the shaded area) of the reposition score across 5
dates. First we note that when N is small (100) all three learning-
based methods outperform the human expert policy by a signif-
icant margin, e.g., more than 6% improvement achieved by the
best performer V1D3-G in this case. As N increases, however, the
performance of TLab deteriorates dramatically, as much as over
15%, as shown in Figure 3b. On the other hand, V1D3 achieves
a remarkable 12% improvement on the average income rate com-
pared to TLab as N increases to 2000, and outperforms consistently
with great margin both TLab and the human Expert in all cases.
Note that N=2000 is more than 20% of the vehicle population in
the simulations. The results show that the proper use of stochastic
policy helps improve the robustness to the increase of N (V1D3 vs
V1D3-G), and that online learning facilitates e�ective coordination
among managed vehicles and help achieve a stunning performance

scalability and robustness when N increases in both deterministic
and stochastic cases, e.g., V1D3 outperforms the TLab by 15x and
the human Expert policy by nearly 4x as shown in Figure 3b.

6.3 Performance Analysis
In this subsection we take a deeper look at the online learning
component of V1D3. It enables V1D3 to quickly adapt to any new
changes occurring in the online environment and is key to the
superior performance of V1D3 in both order dispatching and driver
repositioning. In the following experiments we empirically support
this observation by simulating the occurrences of irregular events
and visualizing the changes of the values in response to those events.
The results are presented in Figure 4.

6.3.1 The additions of new drivers. This illustrates the real-world
cases where drivers (or supplies) become available at the neighbor-
hood of one location, either by completing previous orders or by
going online from o�ine, e.g., at the airport or the busy downtown
district. To visualize the adaptive response of V1D3 to such events,

V1D3: Next Generation Decision Engine

•The presence of additional orders quickly brings up the value
•The values gradually return to stable state after the additional

demand is consumed (feedback loop)

KDD ’21, Aug. 14–18, 2021, Singapore, Singapore Tang, et al.

(a) (b)

Figure 3: (a). The driversmanaged by V1D3 achieve the highest total income rate (reposition score), surpassing the top solution
TLab in KDD Cup 2020 and the human Expert policy. (b). The relative di�erence (%) of reposition score between N = 100 and
2000 with error bar denoting the standard deviation across 5 days. Here V1D3 demonstrates a robust high performance, within
<0.7% variation, as the managed �eet size N increases 20x.

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

Before After

…

Additions of drivers
at the grid center…

(a) (b)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

++
−−

Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB
(http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

…

Additions of passengers
at the grid center …

Before After

(c) (d)

Figure 4: (a) and (c). Value distribution before and after additions of new drivers (orders) at the grid center; (b) and (d). Each
color represents the value distributions of the sets of cells at di�erent radius to the center, e.g., radius 0 denotes the grid center.
The values decrease (increase) in response to new additional supplies (demands) as desired. The magnitude of the response
gradually diminishes as time elapses and as the distance to the grid center increases.

The results are presented in Figure 3a. Each algorithm is eval-
uated using real-world data on 5 di�erent dates including both
weekdays and weekends. And the same simulations are repeated
for N = 100, 1000, 2000. For each N we report the mean (the marker)
and the variance (the shaded area) of the reposition score across 5
dates. First we note that when N is small (100) all three learning-
based methods outperform the human expert policy by a signif-
icant margin, e.g., more than 6% improvement achieved by the
best performer V1D3-G in this case. As N increases, however, the
performance of TLab deteriorates dramatically, as much as over
15%, as shown in Figure 3b. On the other hand, V1D3 achieves
a remarkable 12% improvement on the average income rate com-
pared to TLab as N increases to 2000, and outperforms consistently
with great margin both TLab and the human Expert in all cases.
Note that N=2000 is more than 20% of the vehicle population in
the simulations. The results show that the proper use of stochastic
policy helps improve the robustness to the increase of N (V1D3 vs
V1D3-G), and that online learning facilitates e�ective coordination
among managed vehicles and help achieve a stunning performance

scalability and robustness when N increases in both deterministic
and stochastic cases, e.g., V1D3 outperforms the TLab by 15x and
the human Expert policy by nearly 4x as shown in Figure 3b.

6.3 Performance Analysis
In this subsection we take a deeper look at the online learning
component of V1D3. It enables V1D3 to quickly adapt to any new
changes occurring in the online environment and is key to the
superior performance of V1D3 in both order dispatching and driver
repositioning. In the following experiments we empirically support
this observation by simulating the occurrences of irregular events
and visualizing the changes of the values in response to those events.
The results are presented in Figure 4.

6.3.1 The additions of new drivers. This illustrates the real-world
cases where drivers (or supplies) become available at the neighbor-
hood of one location, either by completing previous orders or by
going online from o�ine, e.g., at the airport or the busy downtown
district. To visualize the adaptive response of V1D3 to such events,

V1D3: Next Generation Decision Engine

•In both cases the smoothness property of the value function allows the magnitude
of the response to gradually decrease as we move away from the center of the
event

1. X. Tang et al, A Deep Value-network Based Approach for Multi-Driver Order Dispatching, Oral, acceptance rate 6%, SIGKDD 2019
2. Y. Liu et al, Learning to reposition on an online taxi-hailing platform. preprint, 2021

KDD ’21, Aug. 14–18, 2021, Singapore, Singapore Tang, et al.

(a) (b)

Figure 3: (a). The driversmanaged by V1D3 achieve the highest total income rate (reposition score), surpassing the top solution
TLab in KDD Cup 2020 and the human Expert policy. (b). The relative di�erence (%) of reposition score between N = 100 and
2000 with error bar denoting the standard deviation across 5 days. Here V1D3 demonstrates a robust high performance, within
<0.7% variation, as the managed �eet size N increases 20x.

(a) (b) (c) (d)

Figure 4: (a) and (c). Value distribution before and after additions of new drivers (orders) at the grid center; (b) and (d). Each
color represents the value distributions of the sets of cells at di�erent radius to the center, e.g., radius 0 denotes the grid center.
The values decrease (increase) in response to new additional supplies (demands) as desired. The magnitude of the response
gradually diminishes as time elapses and as the distance to the grid center increases.

The results are presented in Figure 3a. Each algorithm is eval-
uated using real-world data on 5 di�erent dates including both
weekdays and weekends. And the same simulations are repeated
for N = 100, 1000, 2000. For each N we report the mean (the marker)
and the variance (the shaded area) of the reposition score across 5
dates. First we note that when N is small (100) all three learning-
based methods outperform the human expert policy by a signif-
icant margin, e.g., more than 6% improvement achieved by the
best performer V1D3-G in this case. As N increases, however, the
performance of TLab deteriorates dramatically, as much as over
15%, as shown in Figure 3b. On the other hand, V1D3 achieves
a remarkable 12% improvement on the average income rate com-
pared to TLab as N increases to 2000, and outperforms consistently
with great margin both TLab and the human Expert in all cases.
Note that N=2000 is more than 20% of the vehicle population in
the simulations. The results show that the proper use of stochastic
policy helps improve the robustness to the increase of N (V1D3 vs
V1D3-G), and that online learning facilitates e�ective coordination
among managed vehicles and help achieve a stunning performance

scalability and robustness when N increases in both deterministic
and stochastic cases, e.g., V1D3 outperforms the TLab by 15x and
the human Expert policy by nearly 4x as shown in Figure 3b.

6.3 Performance Analysis
In this subsection we take a deeper look at the online learning
component of V1D3. It enables V1D3 to quickly adapt to any new
changes occurring in the online environment and is key to the
superior performance of V1D3 in both order dispatching and driver
repositioning. In the following experiments we empirically support
this observation by simulating the occurrences of irregular events
and visualizing the changes of the values in response to those events.
The results are presented in Figure 4.

6.3.1 The additions of new drivers. This illustrates the real-world
cases where drivers (or supplies) become available at the neighbor-
hood of one location, either by completing previous orders or by
going online from o�ine, e.g., at the airport or the busy downtown
district. To visualize the adaptive response of V1D3 to such events,

Value Function is All You Need: A Unified Learning Framework for Ride Hailing Platforms KDD ’21, Aug. 14–18, 2021, Singapore, Singapore

Table 1: Comparison with state-of-the-art dispatching algorithms in simulating environments using real-
world data from DiDi’s ride-hailing platform during both weekdays and weekends in three di�erent cities.
The results are averaged from multiple days and the means and variances across days are reported.

City Environment Method Dispatch score Answer rate (%) † Completion rate (%) †

City A

Weekday

PolarB 2498023.82 ± 12517.26 +2.8398 ± 0.3638 +1.8177 ± 0.3192
Baseline 2387008.73 ± 5429.38 +0.0000 ± 0.0000 +0.0000 ± 0.0000
CVNet 2398814.43 ± 12839.90 +3.7166 ± 0.3602 +0.6548 ± 0.3540
Greedy 2350685.21 ± 5567.51 -1.2964 ± 0.0603 -3.6622 ± 0.0008
V1D3 2509547.65 ± 8794.37 +3.0823 ± 0.0653 +2.0828 ± 0.0338

Weekend

PolarB 2577002.60 ± 91071.56 +2.0634 ± 0.4399 +0.9494 ± 0.4347
Baseline 2487915.88 ± 77111.26 +0.0000 ± 0.0000 +0.0000 ± 0.0000
CVNet 2534253.10 ± 84285.72 +4.9861 ± 0.1908 +1.6428 ± 0.2126
Greedy 2430412.20 ± 77133.57 -1.5470 ± 0.4394 -4.2193 ± 0.3719
V1D3 2590333.62 ± 99474.20 +2.5222 ± 0.1956 +1.3679 ± 0.1300

City B

Weekday

PolarB 1575231.41 ± 29200.11 +2.5077 ± 2.0896 +1.1372 ± 1.9432
Baseline 1498126.49 ± 12037.66 +0.0000 ± 0.0000 +0.0000 ± 0.0000
CVNet 1511983.792 ± 12331.36 +2.6405 ± 0.3073 +0.2856 ± 0.2215
Greedy 1498385.19 ± 30811.10 +1.2401 ± 1.4075 -1.3727 ± 1.3386
V1D3 1589252.82 ± 20981.18 +3.7677 ± 0.7358 +2.4352 ± 0.5846

Weekend

PolarB 1436435.90 ± 52206.43 +1.3003 ± 1.4210 -0.2523 ± 1.5487
Baseline 1402633.35 ± 33007.10 +0.0000 ± 0.0000 +0.0000 ± 0.0000
CVNet 1407527.12 ± 38468.35 +2.5140 ± 1.4626 -0.8369 ± 1.5392
Greedy 1388862.54 ± 46301.08 +0.6618 ± 0.6337 -2.3576 ± 0.9062
V1D3 1453191.10 ± 40822.98 +2.4246 ± 0.2247 +0.8618 ± 0.2460

City C

Weekday

PolarB 767201.73 ± 33299.30 -3.0291 ± 3.6575 -3.8274 ± 3.4695
Baseline 738083.83 ± 44261.91 +0.0000 ± 0.0000 +0.0000 ± 0.0000
CVNet 744578.48 ± 42294.09 +6.3528 ± 0.1955 +2.7810 ± 0.6404
Greedy 724491.04 ± 46843.13 -3.1926 ± 0.8896 -5.6701 ± 0.4511
V1D3 778687.02 ± 48186.72 +4.8733 ± 0.0938 +2.9925 ± 0.0934

Weekend

PolarB 804656.13 ± 15354.59 -1.9825 ± 2.9749 -2.8981 ± 2.9205
Baseline 764460.73 ± 4893.10 +0.0000 ± 0.0000 +0.0000 ± 0.0000
CVNet 780972.50 ± 18303.07 +7.0296 ± 2.4580 +4.3322 ± 2.4390
Greedy 746729.07 ± 3357.45 -4.1320 ± 0.8392 -5.8998 ± 0.5004
V1D3 825870.31 ± 7756.72 +1.6107 ± 1.1763 +0.5496 ± 0.8569

† The reported numbers are relative improvement computed against the Baseline.

• TLab. The o�ine method by [4] that received the �rst prize in
the vehicle repositioning task of KDD Cup 2020 RL track compe-
tition. A single agent deep reinforcement learning approach with
a global pruned action space is used. The Q function accepts not
only the local information of the managed vehicle as the state but
also the global information in the whole area, i.e., the real-time
distribution of orders, vehicles and rewards. During inference the
reposition action is selected in a greedy manner w.r.t. Q values.

• Expert. A human expert policy extracted from the historical
idle driver transition data. Millions of idle driver trajectories are
analyzed to estimate the transition probability matrix of each
origin-destination pair of grids at each given time slice. During
inference the reposition destination of a given vehicle is sampled
according to the transition matrix.

• V1D3-G. A deterministic (greedy) variant of V1D3. During in-
ference instead of sampling the action according to (8) the grid
with the highest value is selected with random tie breaking.

We use mean income rate, or reposition score, as the metric of
the reposition performance. It is computed as the mean of each

managed vehicle’s total income per unit online time. To evaluate
the algorithm performance we use the same simulator powered by
the real-world dataset from the dispatching experiments, in which
each managed vehicle acts as an autonomous agent fully controlled
by the reposition algorithm. The reposition action is triggered every
150 dispatching rounds (C = 150 in Algorithm 5.1), i.e., 5 minutes
between every two reposition action. Vehicles idling for less than
5 minutes will not qualify for the reposition round and will stay
where they are until dispatched or repositioned.

One of the main challenge in large-scale �eet management is to
maintain the high income rate of each individual vehicle as the �eet
size increases. To that end the reposition algorithm needs to coor-
dinate the controlled agents and automatically re-balance against
dynamic demands, e.g., not directing too many or too few vehicles
to the same destination. Hence the key question we are trying to
answer in the experiments is whether the reposition algorithm can
still maintain high performance when the size of the managed �eet,
denoted as N, increases to a level that takes a signi�cant portion of
the total driver population.

✓Experiments include both weekdays and weekends in three different cities
✓Outperform methods including KDD Cup winner PolarB and published algorithms such as CVNet and

strong baselines

✓V1D3 combines the advantages of both PolarB (pure online) and CVNet1 (pure offline)

‣increases total driver income by as much as +8% against the Baseline, +6% against previous SOTA
CVNet and +3% against PolarB
‣Increases user experience by as much as +8% against PolarB

✓Experiments include varying the size of the managed fleet, for each fleet size averaging over five
different days

✓Outperform KDD Cup winner TLab2 and human expert policy
✓V1D3 achieves more than +6% improvement in driver income rate over the human expert policy
✓V1D3 outperforms TLab by 15x in robustness as the fleet size increases 20x

Dispatch

Reposition

V1D3: Next Generation Decision Engine

V1D3: Next Generation Decision Engine

‣https://outreach.didichuxing.com/
Simulation/

‣https://arxiv.org/abs/2105.08791

Open ride-hailing marketplace
simulation platform

Link to full paper

https://outreach.didichuxing.com/Simulation/
https://outreach.didichuxing.com/Simulation/
https://outreach.didichuxing.com/Simulation/
https://arxiv.org/abs/2105.08791

THANK
YOU
��		����������
����������8����·�

�B1��

