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maximize the total utilities of the assignments where the utility scores are computed as the Temporal
Difference error between order’s destination state and driver ‘s current state, e.g.,

(y v — 1)
kij(y — 1)

pij = Rij +y IV (s)) = Visi) + Q- U
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Reinforcement Learning Framework
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Case study \ Y '3
» Left: same pickup distance, driver features, etc. Which one to dispatch? ;T.f Al ’ / <¢
» Right: same trip fee, pickup distance, passenger features, etc. VWhich one to fulfill /‘\ /0

. . . g RN
The final matching weight captures both cases balancing between the value ‘ e —f

of passenger’s destination and that of the driver’s current state
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Reinforcement Learning Framework
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Evaluated the value network on the hundreds of millions of historical driver trajectories based on a semi-MDP formulation

Proposed the use of Lipschitz regularization on the value function for better offline RL performance
» Kumar et al., 2020 makes the case that for TD-learning with function approximation the neural network is being implicitly
under-parametrized with a drop in the rank of learned features
» Gogianu et al., 2021 improves the performance of DQN by simply constraining the Lipschitz constant of a single layer, which
also help preserve the rank of the features

Context randomization, hierarchical coarse-coded embedding and multi-city progressive transfer for better generalization o
in the real world DiIDi




- Challenges

® Ride-hailing marketplace — multi-task sequential decision problem
» Order dispatching and vehicle repositioning (autonomous fleet management)
» Hundreds of thousands of decisions are made per day with extended temporal effects
» Connecting tens of thousands of vehicles in a city to millions of ride demands continuously throughout the day

dispatch reposition
. J \_ J




- Challenges

* Real-time dynamics between supply and demand in a stochastic and time-varying

environment.

» Daily recurrent variations usually have good representations in large historical datasets (offline RL)

» Occurrences of irregular (long-tail) events some may never occur in the training data (online learning)
» Additional contextual features are NOT good enough

® Coordinations among vehicles (multi-agent)
» Resolve dispatching constraints and avoid undesirable competitions among managed vehicles

* Interactions between tasks (multi-task)
» Both tasks modify the system state, e.g., supply/demand distributions, as well as the state transition
dynamics, e.g., traffic on the road and the estimated arrival time.
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- V1D3: Next Generation Decision Engine

A unified value-based d learning framework (V1D3)

for both dispatching and repositioning
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V1D3: Next Generation Decision Engine

A unified value-based dynamic learning framework (VI1D3)
for both dispatching and repositioning
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V1D3: Next Generation Decision Engine

A unified value-based dynamic learning framework (VI1D3)

for both dispatching and repositioning
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V1D3: Next Generation Decision Engine

A unified value-based dynamic learning framework (VI1D3)

for both dispatching and repositioning
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- V1D3: Next Generation Decision Engine

A unified value-based dynamic learning framework (V1D3)

for both dispatching and repositioning
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V1D3: Next Generation Decision Engine

A unified value-based dynamic learning framework (V1D3)

Algorithm 5.1 Unified Value Learning Framework for Dynamic for both dispatching and repositioning
Order Dispatching and Driver Repositioning (V1D3)

1: Given: the ensemble weight 1 > @ > 0, the reposition threshold

descent step on 0, e.g., 0 «— 0 — aVL(D;0)
18: end for
19: return V

C > 0 (usually chosen between 150 and 300). [ Offline Policy Eva'uatior'] t f t,
2: Given: the oflline evaluated value function V. i 2‘9_ T ' ' L > t
3: Compute the set & containing the changing time points to | e ? Trajectory | l v, l Vi,
re-ensemble. | = : '
4: Initialize the state value network V with random weights 6. : O | [Zf,‘g”:mme}— [\E/?Sueemme}‘ [ Online Learning ]
5: for the dispatch round t = 1,2,--- , N do : { Offline } T Vs, Vpls) = wVp(s) + (1= )Vope(s). ==~ = =T T T T T T
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8. endif e | Value Function Is V 0 6-aVLD:h) | > &/_5 :
9:  Solve the dispatch problem (7) given the current value Vj. All You Need 6 | e -
10. if t mod C = 0 then \ ) i ‘ a :
11: Collect all drivers with idle time exceeding C time steps. T f - - . VL@) a |
12: Compute the destination distribution (8) for each driver | 1 | T E S
given the current value Vj. | | |
13: Reposition each driver stochastically according to the dis- : [ epae J J :
tribution. S R R :
14:  end if : : - | | @,
15:  Obtain the system state Dp, Drand D = Dp U Dy. : : @ =) : |
16:  Construct the gradient of the learning objective (4), i.e., | : @ = |
VL(D; 0) based on the current system state D. | | 2 = | /,f |
17:  Update the state value network by performing a gradient | | N\ | | |
o I
| |
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Next Generation Decision Engine
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- V1D3: Next Generation Decision Engine
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- V1D3: Next Generation Decision Engine
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- V1D3: Next Generation Decision Engine
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V1D3: Next Generation Decision Engine
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(a)

Experiments include both weekdays and weekends in three different cities

Outperform methods including KDD Cup winner PolarB and published algorithms such as CVNet and
strong baselines

V1D3 combines the advantages of both PolarB (pure online) and CVNet! (pure offline)
against the Baseline, against previous SOTA

(b)

increases total driver income by as much as
CVNet and against PolarB
Increases user experience by as much as

against PolarB

Experiments include varying the size of the managed fleet, for each fleet size averaging over five
different days

Outperform KDD Cup winner TLab? and human expert policy
V1D3 achieves more than improvement in driver income rate over the human expert policy
V1D3 outperforms TLab by in robustness as the fleet size increases

Table 1: Comparison with state-of-the-art dispatching algorithms in simulating environments using real-
world data from DiDi’s ride-hailing platform during both weekdays and weekends in three different cities.
The results are averaged from multiple days and the means and variances across days are reported.

City Environment Method Dispatch score Answer rate (%) T Completion rate (%) T

PolarB 2498023.82 + 12517.26 +2.8398 + 0.3638 +1.8177 + 0.3192

Baseline 2387008.73 + 5429.38 +0.0000 = 0.0000 +0.0000 = 0.0000

Weekday CVNet 2398814.43 + 12839.90 +3.7166 + 0.3602 +0.6548 + 0.3540

Greedy 2350685.21 + 5567.51 -1.2964 + 0.0603 -3.6622 + 0.0008

City A V1D3 2509547.65 + 8794.37 +3.0823 + 0.0653 +2.0828 + 0.0338
PolarB 2577002.60 £ 91071.56 +2.0634 + 0.4399 +0.9494 + 0.4347

Baseline 2487915.88 + 77111.26 +0.0000 = 0.0000 +0.0000 = 0.0000

Weekend CVNet 2534253.10 + 84285.72 +4.9861 + 0.1908 +1.6428 + 0.2126

Greedy 2430412.20 £ 77133.57 -1.5470 + 0.4394 -4.2193 + 0.3719

V1D3 2590333.62 + 99474.20 +2.5222 + 0.1956 +1.3679 = 0.1300

PolarB 1575231.41 + 29200.11 +2.5077 = 2.0896 +1.1372 + 1.9432

Baseline 1498126.49 + 12037.66 +0.0000 = 0.0000 +0.0000 = 0.0000

Weekday CVNet 1511983.792 + 12331.36 +2.6405 + 0.3073 +0.2856 + 0.2215

Greedy 1498385.19 + 30811.10 +1.2401 + 1.4075 -1.3727 £ 1.3386

City B V1D3 1589252.82 + 20981.18 +3.7677 £ 0.7358 +2.4352 + 0.5846
PolarB 1436435.90 + 52206.43 +1.3003 + 1.4210 -0.2523 + 1.5487

Baseline 1402633.35 + 33007.10 +0.0000 = 0.0000 +0.0000 = 0.0000

Weekend CVNet 1407527.12 + 38468.35 +2.5140 + 1.4626 -0.8369 + 1.5392

Greedy 1388862.54 + 46301.08 +0.6618 = 0.6337 -2.3576 £ 0.9062
V1D3 1453191.10 + 40822.98 +2.4246 + 0.2247 +0.8618 + 0.2460

PolarB 767201.73 £ 33299.30 -3.0291 £ 3.6575 -3.8274 £+ 3.4695

Baseline 738083.83 + 44261.91 +0.0000 + 0.0000 +0.0000 = 0.0000

Weekday CVNet 744578.48 + 42294.09 +6.3528 + 0.1955 +2.7810 £+ 0.6404

Greedy 724491.04 + 46843.13 -3.1926 £+ 0.8896 -5.6701 £ 0.4511
City C V1D3 778687.02 + 48186.72 +4.8733 + 0.0938 +2.9925 + 0.0934
PolarB 804656.13 + 15354.59 -1.9825 + 2.9749 -2.8981 + 2.9205

Baseline 764460.73 + 4893.10 +0.0000 = 0.0000 +0.0000 = 0.0000
Weekend CVNet 780972.50 £ 18303.07 +7.0296 + 2.4580 +4.3322 + 2.4390

Greedy 746729.07 £ 3357.45 -4.1320 £+ 0.8392 -5.8998 + 0.5004

V1D3 825870.31 + 7756.72 +1.6107 + 1.1763 +0.5496 + 0.8569

T The reported numbers are relative improvement computed against the Baseline.

1. X. Tang et al, A Deep Value-network Based Approach for Multi-Driver Order Dispatching, Oral, acceptance rate 6%, SIGKDD 2019

2. Y. Liu et al, Learning to reposition on an online taxi-hailing platform. preprint, 2021
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